TOSHIBA

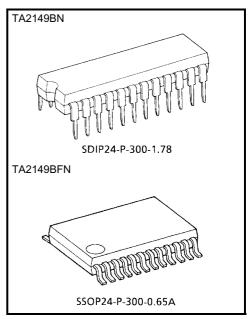
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

## **TA2149BN, TA2149BFN**

3 V AM/FM 1 Chip Tuner IC (for Digital Tuning System)

TA2149BN, TA2149BFN are AM/FM 1 chip tuner ICs, which are designed for portable Radios and 3 V Head phone Radios.

This is suitable for Digital Tuning System Applications. FM Local Oscillation Voltage is set up low relativity, for NEW FCC.


#### **Functions**

- For NEW FCC.
- Suitable for combination with Digital Tuning System which is included IF Counter.
  - Adjustable for IF count output sensitivity by external resistance of pin 17 (FM only).
- One terminal type AM/FM IF count output for IF counter of Digital Tuning System.
  - FM: 1.3375 MHz (1/8 dividing)
  - AM: 450 kHz
- Built-in Mute Circuit for IF count output.
- For adopting ceramic Discriminator, it is not necessary to adjust the FM Quad Detector Circuit.
- Built-in FM MPX VCO circuit.
- Built-in one terminal type AM/FM Local Oscillator Buffer Output for Digital Tuning System Applications.
  - Built-in 1/16 Pre-scaler for FM Local OSC Buffer.
- Built-in AM Low cut circuit.
- Low supply current.  $(V_{CC} = 3 \text{ V}, \text{Ta} = 25^{\circ}\text{C})$

 $I_{CCq}$  (FM) = 13 mA (Typ.)

 $ICC_q$  (AM) = 8.5 mA (Typ.)

Operating Supply voltage range: VCC = 1.8~7 V (Ta = 25°C)

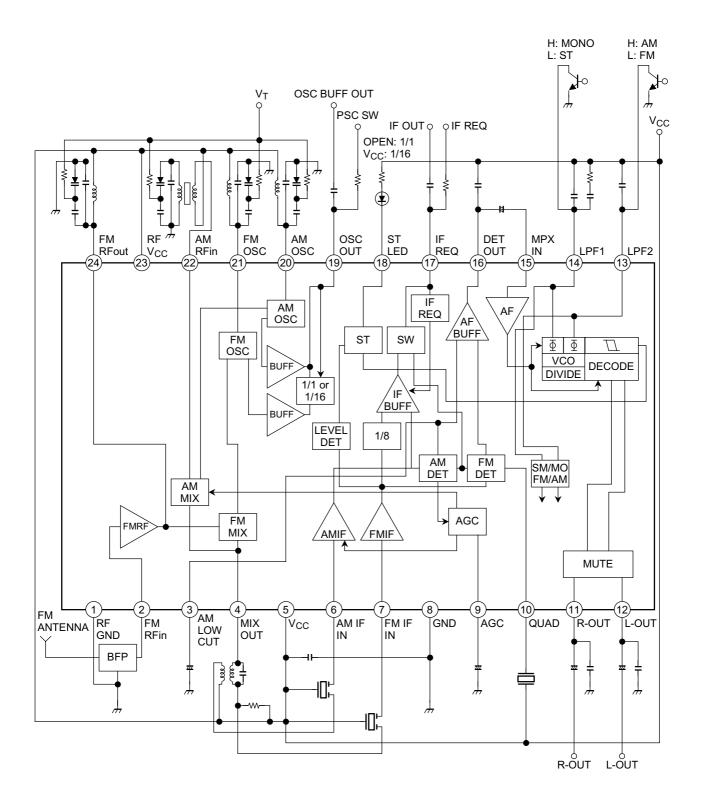


Weight: SDIP24-P-300-1.78: 1.2 g (Typ.) SSOP24-P-300-0.65A: 0.14 g (Typ.)

Note 1: Handle with care to prevent devices from deteriorations by static electricity.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..


The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

The products described in this document are subject to the foreign exchange and foreign trade laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others

The information contained herein is subject to change without notice.

#### **Block Diagram**



# Explanation of Terminals (Terminal Voltage: Typical terminal voltage at no signal with test circuit, $V_{CC}=3~V,~Ta=25^{\circ}C)$

| PIN<br>No. | Characteristic                                       | Internal Circuit                                             | Termina<br>(Typ | l Voltage<br>.) (V) |
|------------|------------------------------------------------------|--------------------------------------------------------------|-----------------|---------------------|
| INO.       |                                                      |                                                              | AM              | FM                  |
| 1          | RF GND<br>(GND for FM RF stage)                      | _                                                            | 0               | 0                   |
| 2          | FM-RFin                                              | 2<br>Q2<br>Q2<br>Q2<br>Q2<br>Q2<br>Q2<br>Q2<br>Q2<br>Q2<br>Q | 0               | 0.8                 |
| 3          | AM LOW CUT                                           | AM $22 \text{ k}\Omega$ DET $22 \text{ k}\Omega$ 3 GND 8     | 1.0             | _                   |
| 4          | MIX OUT                                              | VCC 5  FM MIX  AM MIX  RF GND 1  8 GND                       | 3.0             | 3.0                 |
| 5          | V <sub>CC</sub> (V <sub>CC</sub> for AM, FM IF, MPX) | _                                                            | 3.0             | 3.0                 |
| 6          | AM IF IN                                             | GND (8)                                                      | 2.3             | 2.5                 |

| PIN      | PIN No. Characteristic Internal Circuit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |  |
|----------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--|
| INU.     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AM  | FM  |  |
| 7        | FM IF IN                                | VCC (5) CO (8) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0 | 3.0 |  |
| 8        | GND<br>(GND for AM, FM IF, MPX)         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0   | 0   |  |
| 9        | AGC                                     | 6 DAD 8 B DAD A STATE OF THE ST | 0   | 0   |  |
| 10       | QUAD                                    | V <sub>CC</sub> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5 | 2.2 |  |
| 11<br>12 | R-OUT<br>L-OUT                          | Vcc 5 (1/12) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2 | 1.2 |  |

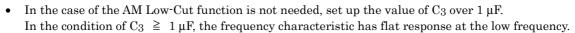
| PIN | Characteristic                                                                                                                 | Internal Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Termina<br>(Typ | l Voltage<br>.) (V) |
|-----|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
| No. |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AM              | FM                  |
| 13  | LPF2 • LPF terminal for phase detector • Bias terminal AM/FM SW circuit V <sub>13</sub> = GND → AM V <sub>13</sub> = OPEN → FM | AM/FM SW SW SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0               | 2.2                 |
| 14  | LPF1  • LPF terminal for synchronous detector  • VCO stop terminal V <sub>14</sub> = GND → VCO STOP                            | The state of the s | 0.7             | 2.4                 |
| 15  | MPX IN                                                                                                                         | 15 55 kΩ W W W W W W W W W W W W W W W W W W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7             | 0.7                 |
| 16  | DET OUT                                                                                                                        | V <sub>CC</sub> $\bigcirc$ AM $\bigcirc$ FM $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0             | 0.9                 |

| PIN<br>No. | Characteristic | Internal Circuit                            |     | l Voltage<br>.) (V) |
|------------|----------------|---------------------------------------------|-----|---------------------|
| INO.       |                |                                             | AM  | FM                  |
| 17         | IF REQ         | 5 Vcc                                       | _   | _                   |
| 18         | ST LED         | 19 kHz ———————————————————————————————————  | _   | _                   |
| 19         | OSC OUT        | RF V <sub>CC</sub> 23  G 08  RF-GND 2  (19) | 2.8 | 2.7                 |
| 20         | AM OSC         | Vcc (5)  GND (8)                            | 3.0 | 3.0                 |
| 21         | FM OSC         | Q1<br>RF V <sub>CC</sub> Q3<br>GND 1        | 3.0 | 3.0                 |



| PIN<br>No. | Characteristic                                       | Internal Circuit                                | Terminal Voltage<br>(Typ.) (V) |     |  |
|------------|------------------------------------------------------|-------------------------------------------------|--------------------------------|-----|--|
| 110.       |                                                      |                                                 | AM                             | FM  |  |
| 22         | AM RFin                                              | AGC — Q22 — W — W — W — W — W — W — W — W — W — | 3.0                            | 3.0 |  |
| 23         | RF V <sub>CC</sub> (V <sub>CC</sub> for FM RF stage) | _                                               | 3.0                            | 3.0 |  |
| 24         | FM RFout                                             | cf. pin 1                                       | 3.0                            | 3.0 |  |

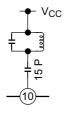
#### **Application Note**

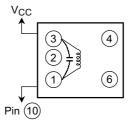

#### 1. AM Low-Cut Circuit

• The AM Low-Cut action is carried out by the bypass of the high frequency component of the positive-feedback signal at the AF AMP stage.

The external capacitor: C<sub>3</sub> by-pass this component.

• The cut-off frequency fL is determined by the internal resistance  $22~k\Omega$  (Typ.) and the external capacitor C<sub>3</sub> as following;


$$f_L = \frac{1}{2 \times \pi \times 22 \times 10^3 \times C_3} (Hz)$$




• It is possible to reduce the recovered output level at AM mode, by additional resistance between the pin 3 and GND line.

#### 2. FM Detection Circuit

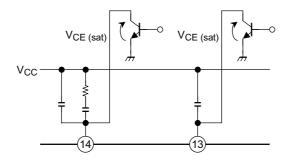
For the FM detection circuit, detection coil is able to use instead of ceramic discriminator. Recommended circuit and recommended coil are as follows. (In this case, please take care that  $V_{\rm in}$  (lim.) falls a little.)





| Test      | Co   | Qo | Turn |     | rns |     | Wire    | Reference                        |
|-----------|------|----|------|-----|-----|-----|---------|----------------------------------|
| Frequency | (pF) | g  | 1-2  | 2-3 | 1-3 | 4-6 | (mm¢)   | Reference                        |
| 10.7 MHz  | 51   | 45 | _    | _   | 30  |     | 0.08UEW | Toko Co., Ltd.<br>600BEAS-10018Z |

#### 3. FM/AM switch and forced monaural switch.

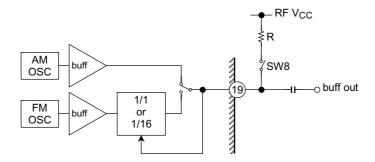

- FM/AM switchover and stereo/forced monaural switchover are done by pin 13 and pin 14.
- FM/AM switch (pin 13)

V13: Low (Active Low,  $V_{th}$  = 0.2 V (Typ.),  $I_{th}$  30  $\mu A$  (Typ.)  $\rightarrow$  AM V13: OPEN  $\rightarrow$  FM

• Stereo/forced monaural switch (pin 14)

Stereo/forced monaural switch (pin 14) V14: Low (Active Low,  $V_{th} = 0.2 \text{ V (Typ.)}$ ,  $I_{th} 30 \,\mu\text{A (Typ.)} \rightarrow \text{Forced Monaural}$ 

V14: OPEN  $\rightarrow$  Stereo






#### 4. V<sub>CC</sub> Line

This ICs have two voltage supply terminals,  $V_{CC}$  (for AM, FM IF, MPX stage) and RF  $V_{CC}$  (for FM RF stage). Set up the potential difference between  $V_{CC}$  and RF  $V_{CC}$  0.4 V (typ.) or less, otherwise there is the case that this IC doesn't operate normally.

#### 5. How to control the Divider of FM OSC.

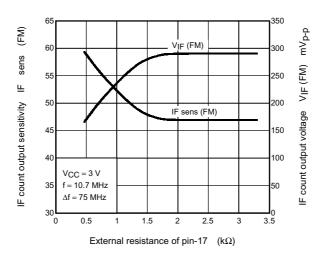


Divider of FM OSC ON/OFF switching is controlled by external pull-up resistor of pin 19.

In case of Divider of FM OSC is used, it is necessary to set up the value of R under  $470 \Omega$  (typ.).

When R is over 470  $\Omega$ , it is feared that Divider is not operating. (At this time, buffer output frequency is equal to FM OSC frequency.)

Which ever Divider of FM OSC is used or not, AM OSC buffer frequency and output level is same.


| Mode  | SW8  | Output Frequency | Output Level (Typ.) |  |  |
|-------|------|------------------|---------------------|--|--|
| FM    | OPEN | 1/1 FM OSC       | 35 mVrms            |  |  |
| I IVI | ON   | 1/16 FM OSC      | 110 mVrms           |  |  |
| AM    | OPNE | 1/1 FM OSC       | 75 mVrms            |  |  |
| Aivi  | ON   | 1/1 FW 030       | 75 111711115        |  |  |

#### 6. How to adjust the IF Count Output Sensitivity

IF count output sensitivity can be adjusted by changing the value of external resistance at pin 17.

This ICs have IF signal level detector in pin 9. When DC voltage of pin 9 is high than threshold, IF count output signal come out from the pin 17.

And this threshold is controlled by value of external resistance at pin 19.





#### Maximum Ratings (Ta = 25°C)

| Character             | istics    | Symbol           | Rating  | Unit   |  |
|-----------------------|-----------|------------------|---------|--------|--|
| Supply voltage        |           | V <sub>CC</sub>  | 8       | V      |  |
| LED current           |           | ILED             | 10      | mA     |  |
| LED voltage           |           | VLED             | 8       | V      |  |
| Power dissipation     | TA2149BN  | P <sub>D</sub>   | 1200    | mW     |  |
| Fower dissipation     | TA2149BFN | (Note 2)         | 500     | ] '''۷ |  |
| Operating temperature | Э         | T <sub>opr</sub> | -25~75  | °C     |  |
| Storage temperature   |           | T <sub>stg</sub> | -55~150 | °C     |  |

Note 2: Derated above Ta = 25°C in the proportion of 9.6 mW/°C for TA2149BN of 4 mW/°C for TA2149BFN.

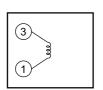
Electrical Characteristics (Unless otherwise specified, Ta = 25°C,  $V_{CC} = 3$  V,

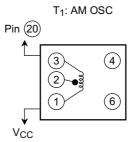
F/E: f = 98 MHz,  $f_m = 1$  kHz FM IF: f = 10.7 MHz,  $\Delta f = \pm 75$  kHz,  $f_m = 1$  kHz AM: f = 1 MHz, MOD = 30%,  $f_m = 1$  kHz

MPX:  $f_m = 1 \text{ kHz}$ )

| Characteristic |                                   | Symbol                      | Test<br>Circuit | Test Condition                                 | Min    | Тур.   | Max    | Unit              |
|----------------|-----------------------------------|-----------------------------|-----------------|------------------------------------------------|--------|--------|--------|-------------------|
| Supply current |                                   | I <sub>CC (FM)</sub>        | _               | V <sub>in</sub> = 0, FM mode                   | _      | 13     | 16.5   | mA                |
|                |                                   | I <sub>CC (AM)</sub>        | _               | V <sub>in</sub> = 0, AM mode                   |        | 8.5    | 11.0   | IIIA              |
|                | Input limiting voltage            | V <sub>in (lim)</sub>       | _               | V <sub>in</sub> = 60dBμV EMF,<br>–3dB limiting |        | 10     | _      | dBμV EMF          |
| F/E            | Local OSC buffer output voltage 1 | V <sub>OSC</sub> (buff) FM1 | _               | f <sub>OSC</sub> = 108.7 MHz                   | 23     | 35     | _      | mVrms             |
|                | Local OSC buffer output voltage 2 | V <sub>OSC</sub> (buff) FM2 | _               | f <sub>OSC</sub> = 6.79375 MHz<br>SW8: ON      | 75     | 110    | _      | mVrms             |
|                | Input limiting voltage            | V <sub>in (lim)</sub> IF    | _               | V <sub>in</sub> = 80dBμV EMF,<br>–3dB limiting | 37     | 42     | 47     | dBμV EMF          |
|                | Recovered output voltage          | V <sub>OD</sub>             | _               | $V_{in} = 80 dB\mu V EMF$                      | 200    | 250    | 300    | mVrms             |
|                | Signal to noise ratio             | S/N                         | _               | $V_{in} = 80 dB\mu V EMF$                      | _      | 75     | _      | dB                |
| FM IF          | Total harmonic distortion         | harmonic distortion THD -   |                 | $V_{in} = 80 dB \mu V EMF$                     | _      | 0.3    | _      | %                 |
| FIVIT          | AM rejection ration               | AMR                         | _               | $V_{in} = 80 dB \mu V EMF$                     | _      | 60     | _      | dB                |
|                | IF count output frequency         | f <sub>IF</sub> (FM)        | _               | $V_{in} = 80 dB\mu V EMF, SW7: ON$             | 1.3373 | 1.3375 | 1.3377 | MHz               |
|                | IF count output voltage           | V <sub>IF</sub> (FM)        | _               | $V_{in} = 80 dB\mu V EMF, SW7: ON$             | 250    | 290    | 330    | mV <sub>p-p</sub> |
|                | IF count output sensitivity       | IF sens<br>(FM)             | _               | SW7: ON                                        | 42     | 47     | 52     | dBμV EMF          |
|                | Gain                              | G <sub>V</sub>              | _               | $V_{in} = 27 dB\mu V EMF$                      | 20     | 38     | 70     | mVrms             |
|                | Recovered output voltage          | V <sub>OD</sub>             | _               | V <sub>in</sub> = 60dBμV EMF                   | 60     | 85     | 108    | mVrms             |
|                | Signal to noise ratio             | S/N                         | _               | V <sub>in</sub> = 60dBμV EMF                   | _      | 41     | _      | dB                |
| 4.54           | Total harmonic distortion         | THD                         | _               | $V_{in} = 60 dB\mu V EMF$                      | _      | 0.7    | _      | %                 |
| AM             | Local OSC buffer output voltage   | V <sub>OSC</sub> (buff) AM  | _               | f <sub>OSC</sub> = 1.45 MHz                    | 55     | 75     | _      | mVrms             |
|                | IF count output voltage           | V <sub>IF</sub> (AM)        | _               | $V_{in} = 60 dB\mu V EMF$ , SW7: ON            | 250    | 290    | 350    | mV <sub>p-p</sub> |
|                | IF count output sensitivity       | IF sens<br>(AM)             |                 | SW7: ON                                        | 33     | 38     | 43     | dBμV EMF          |
| Din 17 a       | utnut raciatana                   | D                           | _               | FM mode                                        | _      | 0.75   |        | kO                |
| FIII 1/ 0      | output resistance                 | R <sub>17</sub>             | _               | AM mode                                        | _      | 15.5   |        | kΩ                |

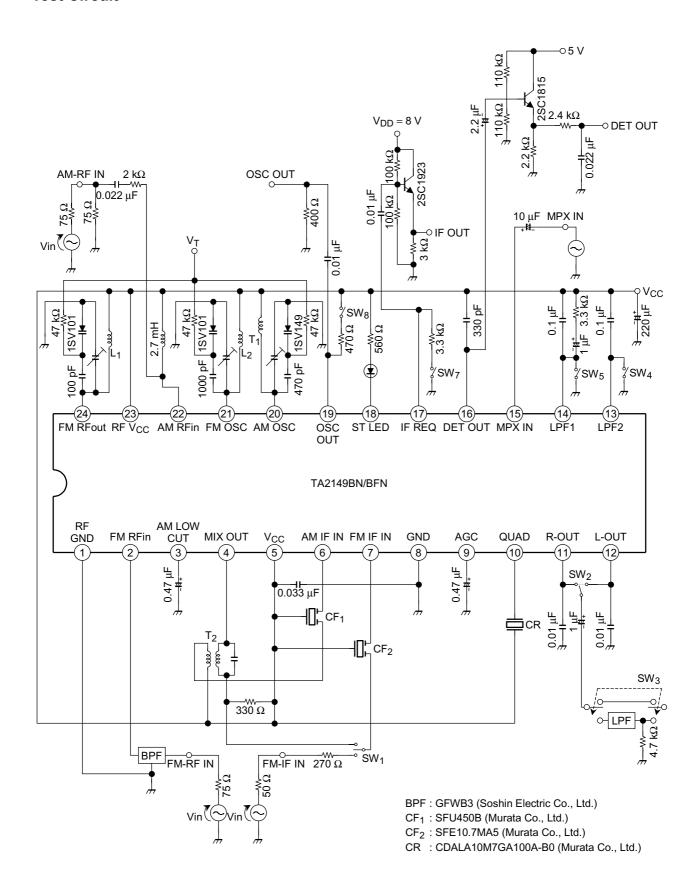
|                    | Characteristic         |              | Symbol                          | Test<br>Circuit             | Test Con                                                                 | dition                  | Min  | Тур. | Max | Unit      |
|--------------------|------------------------|--------------|---------------------------------|-----------------------------|--------------------------------------------------------------------------|-------------------------|------|------|-----|-----------|
|                    | Input resistance       |              | R <sub>IN</sub>                 | _                           | _                                                                        |                         | _    | 55   | _   | kΩ        |
|                    | Output resistan        | се           | R <sub>OUT</sub>                | _                           | _                                                                        |                         |      | 5    | _   | kΩ        |
|                    | Max. composite voltage | signal input | V <sub>in MAX</sub><br>(Stereo) | _                           | L + R = 90%, P = 10%,<br>SW3: LPF ON<br>f <sub>m</sub> = 1 kHz, THD = 3% |                         | _    | 700  | _   | mVrms     |
|                    |                        |              |                                 |                             | L + R =                                                                  | f <sub>m</sub> = 100 Hz | _    | 45   | _   |           |
|                    | Separation             |              | Sep.                            |                             | 180 mVrms,<br>P = 20 mVrms                                               | f <sub>m</sub> = 1 kHz  | 35   | 45   | _   | dB        |
|                    |                        |              |                                 |                             | SW3: LPF ON                                                              | f <sub>m</sub> = 10 kHz | _    | 45   | _   |           |
|                    | Total harmonic         | Monaural     | THD<br>(Monaural)               | _                           | V <sub>in</sub> = 200 mVrms                                              |                         | _    | 0.3  | _   | · %       |
| MPX                | distortion             | Stereo       | THD<br>(Stereo)                 | _                           | L+R = 180 mVrms,<br>P = 20 mVrms, SW3: LPF ON                            |                         | _    | 0.3  | _   | 76        |
|                    | Voltage gain           |              | G <sub>V</sub>                  | _                           | V <sub>in</sub> = 200 mVrms                                              |                         | -2.7 | -1.2 | 0.2 | dB        |
|                    | Channel balance        | е            | C.B.                            | _                           | V <sub>in</sub> = 200 mVrms                                              |                         | -1.5 | 0    | 1.5 | dB        |
|                    | Stereo LED             | ON           | V <sub>L (ON)</sub>             | _                           | Pilot input (19 kHz                                                      | ٠,                      | _    | 10   | 14  | mVrms     |
|                    | sensitivity            | OFF          | V <sub>L</sub> (OFF)            | _                           | Filot iriput (19 kHz                                                     | <del>-)</del>           | 5    | 8    | _   | IIIVIIIIS |
|                    | Stereo LED hysteresis  |              | VH                              | _                           | To LED turn off fron                                                     | om LED turn             | _    | 2    | _   | mVrms     |
|                    | Capture range          |              | C.R.                            | _                           | P = 15 mVrms                                                             |                         | _    | ±8   | _   | %         |
| Signal noise ratio |                        | S/N          | _                               | V <sub>in</sub> = 200 mVrms |                                                                          | _                       | 80   | _    | dB  |           |
| Muting a           | attenuation            |              | MUTE                            | _                           | V <sub>in</sub> = 200 mVrms                                              |                         | _    | 80   | _   | dB        |


#### **Coil Data**


| Coil No.              | Test Freg. | L    | Со   | Qo |     |     | Turns          |     |     | Wire    | re Reference                   |  |
|-----------------------|------------|------|------|----|-----|-----|----------------|-----|-----|---------|--------------------------------|--|
| Coll No.              | restried.  | (μΗ) | (pF) | g  | 1-2 | 2-3 | 3 1-3 1-4 4-   | 1-4 | 4-6 | (mm¢)   | Reference                      |  |
| L <sub>1</sub> FM RF  | 100 MH z   | _    | _    | 79 | _   | _   | $2\frac{1}{2}$ | _   | _   | 0.16UEW | Toko Co., Ltd.<br>666SNF-305NK |  |
| L <sub>2</sub> FM OSC | 100 MH z   | _    | _    | 76 | _   | _   | 2              | _   | _   | 0.16UEW | Toko Co., Ltd.<br>666SNF-306NK |  |
| T <sub>1</sub> AM OSC | 796 kH z   | 268  | _    | 65 | 19  | 95  | _              | _   | _   | 0.05UEW | Toko Co., Ltd.<br>5PNR-5146Y   |  |
| T <sub>2</sub> AM IFT | 455 kH z   | _    | 470  | 60 | _   | _   | 109            | _   | 7   | 0.05UEW | Toko Co., Ltd.<br>5PLG-5147X   |  |






L<sub>2</sub>: FM OSC

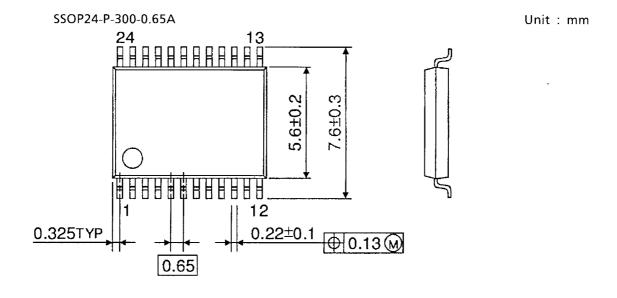


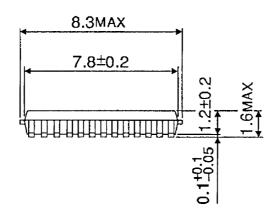


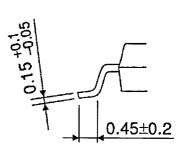
T<sub>2</sub>: AM IFT FM C.F. AM C.F. ↓ V<sub>CC</sub> Pin 4

#### **Test Circuit**




### **Package Dimensions**


SDIP24-P-300-1.78 Unit: mm




Weight: 1.2 g (Typ.)

### **Package Dimensions**







Weight: 0.14 g (Typ.)