TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic # **TA2002F, TA2002FN** 1 ### Stereo Headphone Amplifier (3V USE) The TA2002F, TA2002FN are developed for play-back stereo headphone equipments (3V use). They are built in dual auto-reverse preamplifier, dual OCL power amplifier, and a ripple filter. #### **Features** #### Power amplifier stage - OCL (output condenser-less) - Low noise: $V_{no} = 22\mu V_{rms}$ (typ.) - Excellent ripple rejection ratio: RR = 62dB (typ.) - Voltage gain: GV = 27dB (typ.) - Built-in a power amplifier mute - Built-in input capacitor for reducing buzz noise #### Preamplifier stage - Auto-reverse with F / R control switch - Input coupling condenser—less - Low noise: $V_{ni} = 1.3 \mu V_{rms}$ (typ.) - Built-in a preamplifier mute - Built-in input capacitor for reducing buzz noise #### Total - Built-in a ripple filter - Built-in a power switch - Low quiescent current : ICCQ = 11.5mA (typ.) (VCC = 3V, Ta = 25°C) - Operating supply voltage range: V_{CC} (opr) = 1.8~4.5V (Ta = 25°C) Weight SSOP24-P-300-1.00 : 0.32 g (typ.) SSOP24-P-300-0.65A : 0.14 g (typ.) ### **Block Dirgram** 2 2002-10-30 Terminal Explanation Terminal Voltage: Typical Terminal Voltage at no Signal with Test Circuit $(V_{CC} = 3V, Ta = 25^{\circ}C)$ | | Terminal | Function | Internal Circuit | Terminal | | |-----|----------------------|--|--|-------------|--| | No. | Name | T different | mental official | Voltage (V) | | | 1 | PRE GND | The GND, except the power drive stage. | | | | | 2 | IN _{A-F} | | 17. | | | | 3 | IN _{A-R} | Input of preamplifier. F / R SW | Ÿ ♦ ♦ | 1.3 | | | 22 | IN _{B-R} | OPEN: (2) / (23) pin
"L" : (3) / (22) pin | 3 | 1.0 | | | 23 | IN _{B-F} | | V _{REF} (101) | | | | 4 | NFA | ─ NF of preamplifier. | 2 50017 | 1.3 | | | 21 | NFB | | <i>#</i> | | | | 5 | PRE OUT _A | Output of preamplifier. | | 1.3 | | | 20 | PRE OUT _B | | | | | | 6 | PW INA | — Input of power amplifier. | CYNOX VREF | 1.3 | | | 19 | PW IN _B | | 6 500Ω (I) 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | | 11 | OUTA | — Output of power amplifier. | 22kΩ #/ | 1.3 | | | 14 | OUTB | | 1kΩ
W→ V _{REF} | | | | 7 | RF IN | Ripple filter terminal. | 232g
100kΩ
7
#
100kΩ | 2.6 | | | 8 | PW SW | Power on / off switch. VCC: Power on OPEN or GND: Power off | Λcc — 8 — 20χΩ — 10χΩ | _ | | | 9 | PW MUTE | Muting switch for power amplifier. V _{CC} : Power amp. on OPEN or GND: Power amp. off | Vcc - 9 20kΩ - W - W - W - W - W - W - W - W - W - | _ | | | Terminal | | Function | Internal Circuit | Terminal
Voltage | | |----------|------------------|--|--|---------------------|--| | No. | Name | T directori | internal energy | (V) | | | 10 | F/RSW | Forward / reverse mode switch. OPEN: Forward mode "L" level: Reverse mode ** This terminal can't be connected with GND line directly. In case of reverse mode, a resistor (R = 180kΩ~270kΩ) should be connected to GND. | | | | | 12 | PW GND | GND for power drive stage. | _ | 0 | | | 13 | OUT _C | Output terminal of center power amplifier. | | | | | 15 | V _{CC} | _ | _ | 3 | | | 16 | BASE | Base bias of an external PNP transistor for ripple filer. | RF OUT O + + + + + + + + + + + + + + + + + + | 2.3 | | | 17 | RF OUT | Ripple filter output. Ripple filter circuit supplies internal circuit except power amplifier circuit with power source. | | 2.6 | | | 18 | PRE SW | Muting switch for preamplifier. $V_{17}(RF\ OUT): Preamp.\ off \\ OPEN: Preamp.\ on \\ \underbrace{This\ terminal\ can't\ be\ connected}_{with\ GND\ line\ directly.}$ In case that terminal is connected with GND line, a resistor $(R \ge 10 k\Omega)$ should be connected to GND. | 100kΩ to F / R SW | _ | | | 24 | V _{REF} | Reference voltage. Preamplifier and power amplifier operate on this reference. | 16.5kg 13kg | 1.3 | | ### **Application Note** #### (1) PW SW It is necessary to connect an external pull-down resistor with the terminal PW SW (pin (8)), in case that this IC is turned on due to external noise etc. #### (2) PW MUTE The leak current flows through the terminal of PW MUTE (pin(9)), in case that the terminal is connected with VCC line independently, even though this IC is off–mode (the terminal of PW SW (pin(8)) is off–mode). It is advised to connect R_1 and C with the terminal of PW MUTE, to reduce a pop sound in switchover between PW mute on / off. And it is advised to connect R_2 , to shorten a switchover time from PW MUTE off–mode to PW MUTE on–mode (see Fig.1). It is better that the constants are $R_1 = R_2 = 100 k\Omega$, $C = 1 \mu F$ at VCC = 3V. As for the constants, select the optimum one depending on each a set carefully. Fig.1 PW mute circuit reducing a pop sound #### (3) F / R SW The terminal of F / R SW (pin(10)) should not be applied to higher voltage than V_{17} (RF OUT), because the ripple filter circuit supplies the F / R SW circuit with power source. And in reverse mode, the terminal of F / R SW should be connected with GND line through R_3 ($180{\sim}270k\Omega$), because the F / R SW circuit doesn't operate normally. It is advised to connect an external capacitor ($C_3 = 1\mu F$), in order to reduce a pop sound in switchover between F / R mode (see Fig.2). As for the constants, select the optimum one depending on each a set carefully. Fig.2 Internal equivalent circuit of F / R SW and PRE SW and the external circuits reducing a pop sound in switchover. In controlling the F / R SW with voltage source, it is applied as follows; Forward mode: 0.8V~V₁₇ (RF OUT) Reverse mode: 0.15V~0.35V #### (4) PRE SW The terminal of PRE SW (pin(18)) should not be applied to higher voltage than V_{17} (RF out), because ripple filter circuit supplies the PRE SW circuit with power source. And this terminal can't be connected with GND line directly, because the PRE SW circuit doesn't operate normally. In case of preamplifier on–mode, this terminal should be opened or connected with GND line through a resister $(R \ge 10 k\Omega)$. It is advised to connect a external resistor $(R_4 = 100 \sim 330 k\Omega)$ and capacitor $(C_4 = 1\mu F)$, in order to reduce a pop sound in switchover between PRE SW on / off mode (see Fig.2). As for the constants, select the optimum one depending on each a set carefully. In controlling the PRE SW with voltage source, it is applied as follows; Preamplifier on-mode: 0.1~0.5V Preamplifier off-mode: 1.0V~ V₁₇ (RF OUT) #### (5) NF resistor of preamplifier The NF resistor (R = $39k\Omega$; see the test circuit) should be connected, to reduce a pop sound. #### (6) Input of power amplifier In case that the volume of power amplifier is less than $10k\Omega$, it can be connected with power amplifier directly as Fig.3–1. In case more than $10k\Omega$, it is necessary to insert the coupling capacitor between volume and PW IN terminal as Fig.3–2. In case that DC current or DC voltage is applied to the terminal of PW IN, the internal circuit has unbalance and the power amplifier doesn't operate normally. Fig.3–1 Volume connection (1) $(R \le 10k\Omega)$ Fig.3–2 Volume connection (2) $(R > 10k\Omega)$ #### (7) Increase of ripple filter current It is built in PNP transistor for a ripple filter, the current capacity is about 10mA. Then this IC can be increased the current capacity of the ripple filter with an external transistor QX (exp. 2SA1362). In this case, as the current gain is up, it is necessary to connect external parts for phase–compensation (see Fig.4). And it is necessary to stabilize the ripple filter circuit carefully, because the ripple filter circuit supplies internal circuit except power amplifier circuit with power source. Fig.4 Increase of ripple filter current #### (8) Pattern layout - (a) The GND line of pin(1) (PRE GND) should be isolated from that of pin(12) (PW GND) at the GND point, where the V_{CC} decoupling condenser is placed. - (b) The GND line of capacitor (for ripple filter) should be isolated from that of compensation capacitor, at the point of pin(12) (PW GND). - (c) The pattern diagram between the pin(24) (VREF) and capacitor should be made shortly. As for pin(1) (PRE GND), it's as well. - (d) The pattern diagram between the pin(12) (PW GND) and compensation capacitor, should be shortly. And this positive line of compensation capacitor should be kept away from the terminals of PW IN, pin(6), (19). - (e) The lines of PW IN should be kept away from those of PW OUT. And each of the PW OUT lines should be kept away. - *See the example of pattern layout as shown next page. #### (9) Oscillation precaution Small temperature coefficient and excellent frequency characteristic is needed by capacitors below. - · Oscillation preventing capacitors for power amplifier output. - · Bypass capacitor for ripple filter - Capacitor between VCC and GND - Capacitor between VREF and GND ### **An Example Of Pattern Layout** ### **Maximum Ratings (Ta = 25°C)** | Char | acteristic | Symbol | Rating | Unit | | |-----------------------|---------------|-----------------------|--------------------|------|--| | Supply voltage | | V _{CC} | 6 | V | | | Output current | Power | I _{o (peak)} | 60 | mA | | | Output current | Ripple filter | I _{RF} | I _{RF} 30 | | | | Power | TA2002F | P _D (Note) | 400 | mW | | | dissipation | TA2002FN | FD (Note) | 500 | | | | Operating temperature | | T _{opr} | -25~75 | °C | | | Storage temperat | ure | T _{stg} | −55~150 | C | | (Note) Derated above Ta = 25° C in the proportion of 3.2mW / °C for TA2002F, and of 4mW / °C for TA2002FN. ## **Electrical Characteristics** Unless Otherwise Specified: V_{CC} = 3V, f = 1kHz, Ta = 25°C, SW₁: a, SW₂: a, SW₃: OPEN, SW₈: ON Preamplifier Stage: R_g = 2.2k Ω , R_L = 10k Ω , SW₂: OPEN, SW₄: ON / OPEN, SW₅: a / b, SW₆: a Power Amplifier Stage: $R_q = 600\Omega$, $R_L = 16k\Omega$, SW_3 : ON, SW_7 : a | Characteristic | | Sym-
bol | Test
Cir-
cuit | Test Condition | | Min. | Тур. | Max. | Unit | | |--|-----------------------------------|---------------------------|----------------------|--|--|----------------------|------|------|------|-------------------| | Quiescent current | | I _{CCQ1} | | Power off, SW ₁ : b, SW ₂ : b SW ₃ : ON Power amp. off, SW ₂ : b V _{in} = 0 | | _ | _ | 5 | μA | | | | | I _{CCQ2} | <u> </u> | | | _ | 5 | 9 | - mA | | | | | I _{CCQ3} | | | | _ | 11.5 | 16.5 | | | | υ | Voltage gain | | G _V | | V _O = -12dBV | | 25 | 27 | 29 | - dB | | | Channel balance | | СВ | | | | _ | 0 | 1.5 | | | | Output power | | P _{O1} | | THD = 10% | R _L = 16Ω | 35 | 50 | _ | mW | | stag | | | P _{O2} | | | R _L = 32Ω | _ | 33 | _ | IIIVV | | lifier | Total harmonic distortion | | THD1 | | P _O = 1mW | | _ | 0.2 | 0.8 | % | | amp | Output noise voltage | | V _{no} | _ | Rg = 600Ω, SW ₇ : b | | _ | 22 | 40 | μV_{rms} | | Power amplifier stage | Ripple rejection ratio | | RR ₁ | | $f_r = 100Hz$, $V_r = -22dBV$
SW ₈ : OPEN | | 45 | 62 | _ | | | | Cross talk | Cross talk (CH-A / CH-B) | | | V _O = -12dBV | | 35 | 42 | _ | dB | | | Power muting attenuation | | ATT1 | | V _O = −12dBV, SW ₂ : a→b | | _ | 80 | _ | | | | Open loop voltage gain | | G _{VO} | | $V_O = -12 dBV, SW_6$: b | | 70 | 80 | _ | dB | | | Closed loop voltage gain | | G _{VC} | | V _O = -12dBV | | _ | 35 | _ | | | 40 | Maximum output voltage | | V _{om} | | THD = 1% | | 600 | 850 | _ | mV _{rms} | | stage | Total harr | Total harmonic distortion | | | $V_O = -12dBV$ | | _ | 0.02 | 0.1 | % | | Preamplifier stage | Equivalent input noise voltage | | V _{ni} | _ | R_g = 2.2k Ω , BPF = 20Hz~20kHz
SW ₅ : c
NAB (G _V = 35dB, f = 1kHz) | | _ | 1.3 | 2.8 | μV _{rms} | | Pre | Cross talk | Cross talk (CH-A / CH-B) | | | V _O = -12dBV | | _ | 70 | _ | dB | | | Cross talk
(forward / reverse) | | CT ₃ | | | | _ | 70 | _ | | | | Pre muting attenuation | | ATT2 | V _O = −12dBV, SW ₃ : OPEN→ON | | _ | 80 | _ | | | | Ripple | filter outp | ut voltage | V_{RF} | | V _{CC} = 2V, I _{RF} = 0mA | | 1.76 | 1.8 | _ | ٧ | | Ripple rejection ratio of ripple filter output | | RR ₂ | _ | V_{CC} = 2V, I_{RF} = 10mA
f_r = 100Hz, V_r = -22dBV
SW ₈ : OPEN | | 45 | 53 | _ | dB | | | Power on / off
switch | | Power on current | I ₈ | | V _{CC} = 1.8V, V ₂₄ ≥ 0.5V | | 5 | _ | _ | μΑ | | | | Power off voltage | V ₈ | _ | V _{CC} = 1.8V, V ₂₄ ≤ 0.3V | | 0 | _ | 0.3 | ٧ | | Power amp.
mute switch | | Mute off current | lg | | V _{CC} = 1.8V, ATT1 ≥ 3dB | | 5 | _ | _ | μΑ | | | | Mute on voltage | V ₉ | | V _{CC} = 1.8V, ATT1 ≥ 60dB | | 0 | _ | 0.3 | V | ### **Test Circuit** Monolithic ceramic condenser ### **Characteristics Curves** Unless Otherwise Specified: V_{CC} = 3V, f = 1kHz, Ta = 25°C Power amplifier Stage: R_g = 600 Ω , R_L = 16 Ω Preamplifier Stage: R_g = 2.2k Ω , R_L = 10k Ω ### **Application Circuit** Monolithic ceramic condenser ### **Package Dimensions** SSOP24-P-300-1.00 Unit: mm Weight: 0.32g (typ.) Weight: 0.14g (typ.) #### **RESTRICTIONS ON PRODUCT USE** 000707EBA - TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. - The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. - The products described in this document are subject to the foreign exchange and foreign trade laws. - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. - The information contained herein is subject to change without notice.