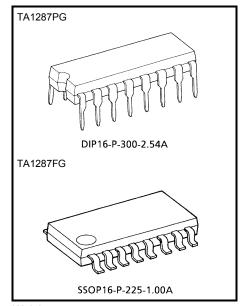
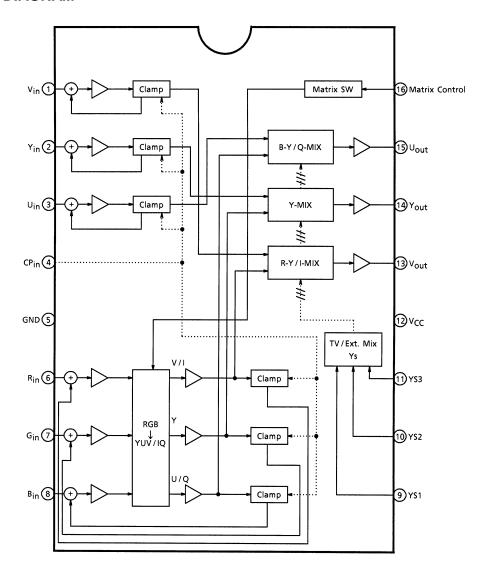
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC


TA1287PG,TA1287FG

RGB TO YUV / IQ HIGH-SPEED MATRIX IC

TA1287PG, TA1287FG are a high-speed switching IC which have 2-channel inputs circuit and a RGB to YUV / IQ matrix circuit. Another feature, TA1287PG, TA1287FG have a signals mixing circuit, which are enable to mix a main signal with an external input signal and outputs the mixed signal. The mixing circuit has 8 combinations of mixing gain ratio of a main to an external signals, which is controlled by high-speed switch.

FEATURES


- RGB to YUV / IQ matrix circuit
- The mixing circuit for a main signal and an external signal
- The high-speed switching circuit of a main signal an external signal
- Band Width: 30MHz at -3dB point.

Weight DIP16-P-300-2.54A: 1.0 g (typ.) SSOP16-P-225-1.00A: 0.14 g (typ.)

BLOCK DIAGRAM

TERMINAL FUNCTIONS

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
1	V _{IN}	Input R-Y (V) or R signal through a clamping capacitor.	12	
2	Y _{IN}	Input Y or G signal through a clamping capacitor.	500Ω	DC : 6.2 V Y : 1 V _{p-p} (with sync)
3	U _{IN}	Input B-Y (U) or B signal through a clamping capacitor.	1, 2, 3	U / V : 0.3 V _{p-p} (B : C = 1 : 1) R / G / B : 0.7 V _{p-p} (100% white)
4	CP _{IN}	Input clamping pulse. Threshold : 0.75 V	\$ 0000 \$ 00000 \$ 00000 \$ 00000 \$ 00000 \$ 00000 \$ 00000 \$ 00000 \$ 00000	0.75 V0 V
5	GND	GND.	_	_
6	R _{IN}	Input R or R-Y (V) signal through clamping capacitor.	1	
7	G _{IN}	Input G or Y signal through a clamping capacitor.	6, 7, 8	DC : 6.2 V Y : 1V _{p-p} (with sync)
8	B _{IN}	Input B or B-Y (U) signal through a clamping capacitor.	500 Ω	$\begin{array}{lll} Y & : & 1V_{p-p} \text{ (with sync)} \\ \text{U/V} & : & 0.3 \ \text{V}_{p-p} \\ & & (\text{B}:\text{C}=\text{1}:\text{1}) \\ \text{R/G/B} & : & 0.7 \ \text{V}_{p-p} \\ & & & (\text{100\% white}) \end{array}$

PIN No	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
9 10 11	YS1,2, 3	Selector to switch mixing ratios. Threshold : 0.75 V	9, 10, 11 500 Ω (3) (3) (5) (1) (5) (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	0.75 V 0 V
12	V _{CC}	Supply 9 V.	_	DC:9 V
13	V _{OUT}	Outputs R-Y (V) or R signal.	<u> </u>	
14	Y _{OUT}	Outputs Y or G signal.	★ \$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$	DO 471/
15	U _{ОUТ}	Outputs B-Y (U) or B signal.	13, 14, 15 TkΩ TkΩ TkΩ TkΩ TkΩ TkΩ TkΩ TkΩ	DC : 4.7 V Y : 1 V_{p-p} (with sync) U / V : 0.3 V_{p-p} (B : C = 1 : 1) R / G / B : 0.7 V_{p-p} (100% color bar)
16	Matrix Control	This terminal's voltage control the matrix coefficient for output signals. Selects the output mode.	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$ \begin{array}{c} RGB \rightarrow YIQ \\ RGB \rightarrow YUV (NTSC) \\ RGB \rightarrow YUV (PAL) \\ \hline Through \\ 0.7 V \end{array} $

4

FUNCTION DESCRIPTION

MIXING RATIO

TA1287PG, TA1287FG have a circuit, which mixes a main signal with an external input signal and outputs the mixed signal. The mixing circuit has 8 combinations of mixing gain ratio of a main to an external signals.

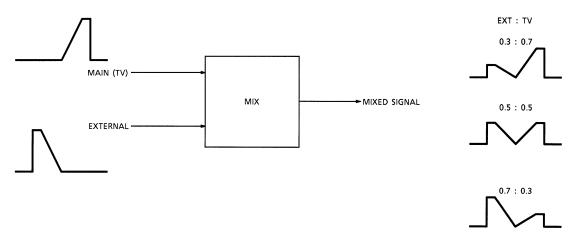


Table The mixing ratio of external to main (TV)

				,
V04	V00	V00	THE MIXII	NG RATIO
YS1	YS2	YS3	EXTERNAL	MAIN (TV)
L	L	L	0	1
Н	L	L	0.3	0.7
L	Н	L	0.4	0.6
Н	Н	L	0.5	0.5
L	L	Н	0.6	0.4
Н	L	Н	0.7	0.3
L	Н	Н	0.8	0.2
Н	Н	Н	1	0

MATRIX CONTROL

Pin 16 is a high-speed switch to control the matrix mode for output signals.

Table Matrix mode depending on by the voltage of pin 16

VOLTAGE OF PIN 16 [V]	MODE
0 ~ 0.7	Through
~ 2.3	RGB to YUV (PAL)
~ 3.8	RGB to YUV (NTSC)
3.8 ~	RGB to YIQ

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERIS	STIC	SYMBOL	RATING	UNIT
Supply Voltage		V _{CCmax}	12	V
Input Pin Voltage		V _{in}	GND – 0.3 to V _{CC} + 0.3	V
Power Consumption	TA1287PG		1400	mW
Fower Consumption	TA1287FG	P _{DF} (Note 1)	641	IIIVV
Power	TA1287PG	1 / θ _{jaD}	-11.2	mW / °C
Consumption Reduction Ratio TA1287FG		1 / θ _{jaF}	/ θ _{jaF} –5.13	
Operating Temperature		T _{opr}	-20~65	°C
Storage Temperature		T _{stg}	-55~150	°C

Note 1: Refer to the figure below.

Note 2: It is possible that TA1287FG function faultily caused by leak problems according to a field intensity from CRT.

Put IC lay-out position to CRT be far more than 20 cm. If there is not a enough distance, intercept it by a shield.

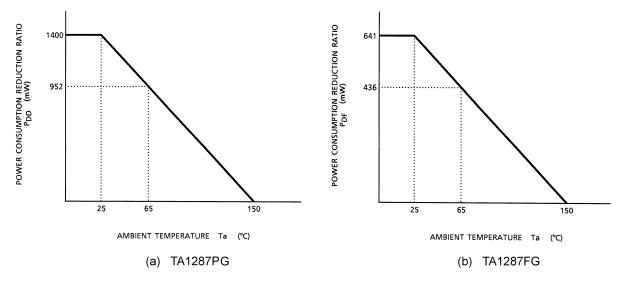


Fig. Power consumption reduction against ambient temperature

OPERATING CONDITIONS

CHARACTERISTIC	DESCRIPTION	MIN	TYP.	MAX	UNIT
Supply Voltage	Pin 12	8.1	9.0	9.9	V
Y Input Signal Level	White: 100% with sync.	_	1.0	_	V _{p-p}
U Input Signal Level	B:C=1:1	_	300	_	mV _{p-p}
V Input Signal Level	B:C=1:1	_	300	_	mV _{p-p}
R Input Signal Level	100% white	_	700	_	mV _{p-p}
G Input Signal Level	100% white	_	700	_	mV _{p-p}
B Input Signal Level	100% white	_	700	_	mV _{p-p}
CP Input Level	Pin 4	1.1	1.5	5.0	V
YS1, YS2, YS3, Input Level	Pin 9, 10, 11	1.1	1.5	5.0	V

ELECTRICAL CHARACTERISTICS

(V_{CC} = 9V and Ta = 25°C, unless otherwise specified) Current consumption

PIN NAME	SYMBOL	TESTCIRCUIT	MIN	TYP.	MAX	UNIT
V _{CC}	Icc	_	20.0	26.0	32.0	mA

Terminal voltages

PIN No.	PIN NAME	SYMBOL	TEST CIRCUIT	MIN	TYP.	MAX	UNIT
1	V _{IN}	V ₁	_	6.0	6.2	6.4	
2	Y _{IN}	V ₂	_	6.0	6.2	6.4	
3	U _{IN}	V ₃	_	6.0	6.2	6.4	
6	R _{IN}	V ₆	_	6.0	6.2	6.4	
7	G _{IN}	V ₇	_	6.0	6.2	6.4	V
8	B _{IN}	V ₈	_	6.0	6.2	6.4	
13	V _{OUT}	V ₁₃	_	4.5	4.7	4.9	
14	Y _{OUT}	V ₁₄	_	4.5	4.7	4.9	
15	U _{OUT}	V ₁₅	_	4.5	4.7	4.9	

7

AC CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
YUV Gain	GTRY	_	(Note A ₁)	-0.5	0	0.5	dB
(Through Mode)	GTY			-0.5	0	0.5	
	GTBY			-0.5	0	0.5	
RGB Gain	GRR	_	(Note A ₂₎	-0.5	0	0.5	dB
(Through Mode)	GRG			-0.5	0	0.5	
	GRB			-0.5	0	0.5	
R Gain (Input to Pin 6)	GRRYP	_	(Note A ₃)	-4.7	-4.2	-3.7	dB
(Matrix Mode)	GRYP			-10.3	-9.8	-9.3	
	GRBYP			-17.3	-16.8	-16.3	
	GRRYN			-4.3	-3.8	-3.3	
	GRYN			-10.3	-9.8	-9.3	
	GRBYN			-18.4	-17.9	-17.4	
	GRRYI			-4.6	-4.1	-3.6	
	GRYI			-10.3	-9.8	-9.6	
	GRBYI			-13.0	-12.5	-12.0	
G Gain (Input to Pin 7)	GGRYP	_	(Note A ₄)	-6.3	-5.8	-5.3	dB
(Matrix Mode)	GGYP			-4.5	-4.0	-3.5	
	GGBYP			-11.5	-11.0	-10.5	
	GGRYN			-5.9	-5.4	-4.9	
	GGYN			-4.5	-4.0	-3.5	
	GGBYN			-10.9	-10.4	-9.9	
	GGRYI			-11.5	-11.0	-10.5	
	GGYI			-4.5	-4.0	-3.5	
	GGBYI			-5.6	-5.1	-4.6	
B Gain (Input to Pin 8)	GBRYP	_	(Note A ₅)	-21.1	-20.6	-20.1	dB
(Matrix Mode)	GBYP			-19.1	-18.6	-18.1	
	GBBYP			-7.7	-7.2	-6.7	
	GBRYN			-20.3	-19.8	-19.3	
	GBYN			-19.1	-18.6	-18.1	
	GBBYN			-7.9	-7.4	-6.9	
	GBRYI			-10.2	-9.7	-9.2	
	GBYI			-19.1	-18.6	-18.1	
	GBBYI			-10.7	-10.2	-9.7	
R-Y Gain (Input to Pin 1)	GTRY73	_	(Note A ₆)	-3.7	-3.2	-2.7	dB
(Matrix Mode)	GTRY64			-5.0	-4.5	-4.0	
	GTRY55			-6.6	-6.1	-5.6	
	GTRY46			-8.5	-8.0	- 7.5	
	GTRY37			-11.0	-10.5	-10.0	
	GTRY28			-14.3	-13.8	-13.3	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Y Gain (Input to Pin 2)	GTY73	_	(Note A ₇)	-3.7	-3.2	-2.7	dB
(Mixing Mode)	GTY64			-5.0	-4.5	-4.0	
	GTY55			-6.6	-6.1	-5.6	
	GTY46			-8.5	-8.0	- 7.5	
	GTY37			-11.0	-10.5	-10.0	
	GTY28			-14.3	-13.8	-13.3	
B-Y Gain (Input to Pin 3)	GTBY73	<u> </u>	(Note A ₈)	-3.7	-3.2	-2.7	dB
(Mixing Mode)	GTBY64			-5.0	-4.5	-4.0	
	GTBY55			-6.6	-6.1	-5.6	
	GTBY46			-8.5	-8.0	-7.5	
	GTBY37			-11.0	-10.5	-10.0	
	GTBY28			-14.3	-13.8	-13.3	
R Gain (Input to Pin 6)	GRR37	_	(Note A ₉)	-3.7	-3.2	-2.7	dB
(Mixing Mode)	GRR46			-5.0	-4.5	-4.0	
	GRR55			-6.6	-6.1	-5.6	
	GRR64			-8.5	-8.0	- 7.5	
	GRR73			-11.0	-10.5	-10.0	
	GRR82			-14.3	-13.8	-13.3	
G Gain (Input to Pin 7)	GRG37	_	(Note A ₁₀)	-3.7	-3.2	-2.7	dB
(Mixing Mode)	GRG46			-5.0	-4.5	-4.0	
	GRG55			-6.6	-6.1	-5.6	
	GRG64			-8.5	-8.0	- 7.5	
	GRG73			-11.0	-10.5	-10.0	
	GRG82			-14.3	-13.8	-13.3	
B Gain (Input to Pin 8)	GRB37	_	(Note A ₁₁)	-3.7	-3.2	-2.7	dB
(Mixing Mode)	GRB46			-5.0	-4.5	-4.0	
	GRB55			-6.6	-6.1	-5.6	
	GRB64			-8.5	-8.0	-7.5	
	GRB73			-11.0	-10.5	-10.0	
	GRB82			-14.3	-13.8	-13.3	
YUV Input Dynamic Range	DTV	_	(Note A ₁₂)	1.2	1.5	1.7	V _{p-p}
(Through Mode)	DTY			1.2	1.5	1.7	
	DTU			1.2	1.5	1.7	
RGB Input Dynamic Range	DRR	_	(Note A ₁₃)	1.2	1.5	1.7	V _{p-p}
(Through Mode)	DRG			1.2	1.5	1.7	
	DRB			1.2	1.5	1.7	
R Input Dynamic Range	DRP	_	(Note A ₁₄)	1.2	1.5	1.7	V _{p-p}
(Input to Pin 6)	DRNU			1.2	1.5	1.7	
(Matrix Mode)	DRNI			1.2	1.5	1.7	
G Input Dynamic Range	DGP	_	(Note A ₁₅)	1.2	1.5	1.7	V _{p-p}
(Input to Pin 7)	DGNU			1.2	1.5	1.7	
(Matrix Mode)	DGNI			1.2	1.5	1.7	

9

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
B Input Dynamic Range	DBP	_	(Note A ₁₆)	1.2	1.5	1.7	V _{p-p}
(Input to Pin 8)	DBNU			1.2	1.5	1.7	
(Matrix Mode)	DBNI			1.2	1.5	1.7	
YUV Input and Output	GfTRY	_	(Note A ₁₇)	30	_	_	MHz
Frequency Characteristic	GfTY			30	_	_	
(At −3 dB Point)	GfTBY			30	_	_	
(Through Mode)							
RGB Input and Output	GfRR	_	(Note A ₁₈)	30	_	_	MHz
Frequency Characteristic	GfRG			30	_	_	
(At −3 dB Point)	GfRB			30	_	_	
(Through Mode)							
	YsRYR	_	(Note A ₁₉)	_	25.0	40.0	ns
	YsRRY			_	20.0	40.0	
Ys Switching Delay	YsYG			_	25.0	40.0	
Time	YsGY			_	20.0	40.0	
	YsBYB			_	25.0	40.0	
	YsBBY				20.0	40.0	
Crosstalk between Each			(Note A ₂₀)		-50	-40	dB
Input	_	_	(Note A ₂₀)	_	-50	-40	UD

TEST CONDITION

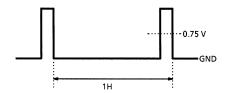
			TES	ST CONDITION	ON (UNLESS	OTHERWIS	SE SPECIFIE	ED, V _{CC} = 9 V and Ta = 25 ± 3°C)
NOTE	ITEM			SW MC		MEASURING METHOD		
		SW ₉	SW ₁₀	SW ₁₁	SW _{16A}	SW _{16B}	SW _{16C}	WEASORING WETTOD
								<common condition="" test=""></common>
								1) V _{CC} = 9 V and Ta = 25 ± 3°C.
								ALL switch modes are B, unless otherwise specified.
A ₁	YUV Gain	В	В	В	В	В	В	1) Input Signal 1 into pin 4
	(Through Mode)							2) Supply DC 0 V to YS1 (pin 9), YS2 (pin 10), YS (pin 11).
								3) Input Signal 2 (f ₀ = 100 kHz, V ₀ = 0.2 Vp-p) into V-IN (pin 1, SW ₁ = A).
								Measure the amplitude of V-OUT at pin 13. Calculate the gain. (GTRY)
								5) Calculate gains of Y-IN to Y-OUT and U-IN to U-OUT, in the same way as 3) to 4) GTY: Y-IN (pin 2) to Y-OUT (pin 14) GTBY: U-IN (pin 3) to U-OUT (pin 15)
A ₂	RGB Gain (Through Mode)	А	A	A	В	В	В	1) Calculate gains against R, G and B, in the same way as NOTE A ₁ . GRR : SW ₆ = A, R-IN (pin 6) to V-OUT (pin 13) GRG : SW ₇ = A, R-IN (pin 7) to Y-OUT (pin 14) GRB : SW ₈ = A, R-IN (pin 8) to U-OUT (pin 15)

			TES	ST CONDITION	ON (UNLESS	D, V _{CC} = 9 V and Ta = 25 ± 3°C)		
NOTE	ITEM			SW MC		MEASURING METHOD		
		SW ₉	SW ₁₀	SW ₁₁	SW _{16A}	SW _{16B}	SW _{16C}	WEASORING WETHOD
A ₃	R Gain (Input to Pin 6) (Matrix Mode)	А	А	А	В	В	Α	Calculate gains against each item, in the same way as NOTE A ₁ . (PAL) GRRYP: R-IN (pin 6) to V-OUT (pin 13) GRYP: R-IN (pin 6) to Y-OUT (pin 14) GRBYP: R-IN (pin 6)
					А	В	А	to U-ÖUT (pin 15) (NTSC, UV) GRRYN: R-IN (pin 6) to V-OUT (pin 13) GRYN: R-IN (pin 6) to Y-OUT (pin 14) GRBYN: R-IN (pin 6) to U-OUT (pin 15)
					A	А	А	(NTSC, IQ) GRRYI : R-IN (pin 6) to V-OUT (pin 13) GRYI : R-IN (pin 6) to Y-OUT (pin 14) GRBYI : R-IN (pin 6) to U-OUT (pin 15)

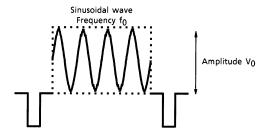
			TES	ST CONDITION	ON (UNLESS	D, V _{CC} = 9 V and Ta = 25 ± 3°C)		
NOTE	ITEM			SW MC	DDE	MEASURING METHOD		
		SW ₉	SW ₁₀	SW ₁₁	SW _{16A}	SW _{16B}	SW _{16C}	MEASURING METHOD
A ₄	G Gain (Input to Pin 7) (Matrix Mode)	A	А	Α	В	В	А	1) Calculate gains against each item, in the same way as NOTE A ₁ . (PAL) GGRYP: G-IN (pin 7) to V-OUT (pin 13) GGYP: G-IN (pin 7) to Y-OUT (pin 14) GGBYP: G-IN (pin 7) to U-OUT (pin 15)
					А	В	А	(NTSC, UV) GGRYN: G-IN (pin 7) to V-OUT (pin 13) GGYN: G-IN (pin 7) to Y-OUT (pin 14) GGBYN: G-IN (pin 7) to U-OUT (pin 15)
					А	А	А	(NTSC, IQ) GGRYI : G-IN (pin 7) to V-OUT (pin 13) GGYI : G-IN (pin 7) to Y-OUT (pin 14) GGBYI : G-IN (pin 7) to U-OUT (pin 15)

			TES	ST CONDITION	ON (UNLESS	D, V _{CC} = 9 V and Ta = 25 ± 3°C)		
NOTE	ITEM			SW MC	MEASURING METHOD			
		SW ₉	SW ₁₀	SW ₁₁	SW _{16A}	SW _{16B}	SW _{16C}	WEASORING WETTOD
A ₅	B Gain (Input to Pin 8) (Matrix Mode)	Α	А	А	В	В	В	1) Calculate gains against each item, in the same way as NOTE A ₁ . (PAL) GGRYP: B-IN (pin 8) to V-OUT (pin 13) GGYP: B-IN (pin 8) to Y-OUT (pin 14) GGBYP: B-IN (pin 8)
					А	В	А	GGBYP: B-IN (pin 8) to U-OUT (pin 15) (NTSC, UV) GGRYN: B-IN (pin 8) to V-OUT (pin 13) GGYN: B-IN (pin 8) to Y-OUT (pin 14) GGBYN: B-IN (pin 8) to U-OUT (pin 15)
					А	А	A	(NTSC, IQ) GGRYI : B-IN (pin 8) to V-OUT (pin 13) GGYI : B-IN (pin 8) to Y-OUT (pin 14) GGBYI : B-IN (pin 8) to U-OUT (pin 15)

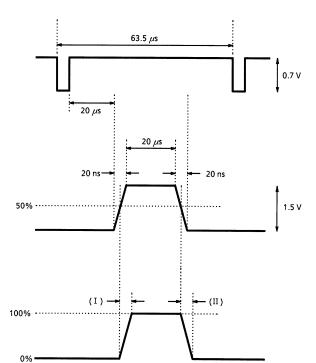
			TES		•	D, V _{CC} = 9 V and Ta = 25 ± 3°C)		
NOTE	ITEM		1	SW MC		MEASURING METHOD		
		SW ₉	SW ₁₀	SW ₁₁	SW _{16A}	SW _{16B}	SW _{16C}	WEAGGRING WETTOD
A ₆	R-Y Gain (Input to Pin 1) (Mixing Mode)	A B A B A	В А В В А	В В В А А	В	В	В	 Input Signal into pin 4. Supply DC 0V to YS1 (pin 9), YS2 (pin 10), YS3 (pin 11). Input Signal 2 (f₀ = 100 kHz, V₀ = 0.2 V_{p-p}) into V-IN (pin 1, SW₁ = A). Measure each amplitude of output signal from V-OUT (pin 13) in each SW MODE. Calculate the gains.
A ₇	Y Gain (Input to Pin 2) (Mixing Mode)	A B A B A B	B A A B A	B B B A A	В	В	В	Calculate gains of Y-IN (pin 2) to Y-OUT (pin 14), in the same way as NOTE A ₆ . (SW ₂ = A)
A ₈	B-Y Gain (Input to Pin 3) (Mixing Mode)	A B A B A	В А В В	В В В А А	В	В	В	Calculate gains of U-IN (pin 3) to Y-OUT (pin 15), in the same way as NOTE A ₆ . (SW ₃ = A)
Ag	R Gain (Input to Pin 6) (Mixing Mode)	A B A B A B	B A A B B	B B A A	В	В	В	Calculate gains of R-IN (pin 6) to V-OUT (pin 13), in the same way as NOTE A ₆ . (SW ₆ = A)
A ₁₀	G Gain (Input to Pin 7) (Mixing Mode)	A B A B A	B A A B A	B B A A	В	В	В	Calculate gains of G-IN (pin 7) to Y-OUT (pin 14), in the same way as NOTE A ₆ . (SW ₇ = A)


			TES	ST CONDITION	ON (UNLESS	ED, V _{CC} = 9 V and Ta = 25 ± 3°C)		
NOTE	ITEM			SW MC	DDE	MEASURING METHOD		
		SW ₉	SW ₁₀	SW ₁₁	SW _{16A}	SW _{16B}	SW _{16C}	WEASURING WETHOD
A ₁₁	B Gain (Input to Pin 8)	A B	B A	B B	В	В	В	1) Calculate gains of B-IN (pin 8) to U-OUT (pin 15), in the same way as NOTE A ₆ . (SW ₈ = A)
	(Mixing Mode)	Α	Α	В				
		В	В	Α				
		A	В	Α				
		В	A	Α -	_			
A ₁₂	YUV Input Dynamic Range	В	В	В	В	В	В	1) Input Signal into pin 4.
	(Through Mode)							2) Supply DC 0V to YS1 (pin 9), YS2 (pin 10), YS3 (pin 11).
								3) Input Signal 2 (f_0 = 100 kHz, V_0 = 0.2 V_{p-p}) into V-IN (pin 1, SW ₁ = A).
								Increase the amplitude of input-signal 2 gradually. Measure the biggest amplitude of input-signal 2 without any distortion on V-OUT wave shape. (DTRY)
								5) Measure in the same way as (pin 3) to (pin 4) for Y-IN (pin 2, SW ₂ = A) and U-IN (pin 3, SW ₃ = A), DTY : Y-IN (pin 2) to Y-OUT (pin 14) DTBY : U-IN (pin 3) to U-OUT (pin 15)
A ₁₃	RGB Input Dynamic Range (Through Mode)	В	В	В	В	В	В	1) Measure in the same way as NOTE A ₁₂ for R-IN (pin 6, SW ₆ = A) G-IN (pin 7, SW ₇ = A) and B-IN (pin 8, SW ₈ = A).
A ₁₄	R Input Dynamic Range (Input to Pin 6) (Matrix Mode)	A	A	A	B A A	B B A	A A A	The following states of the s

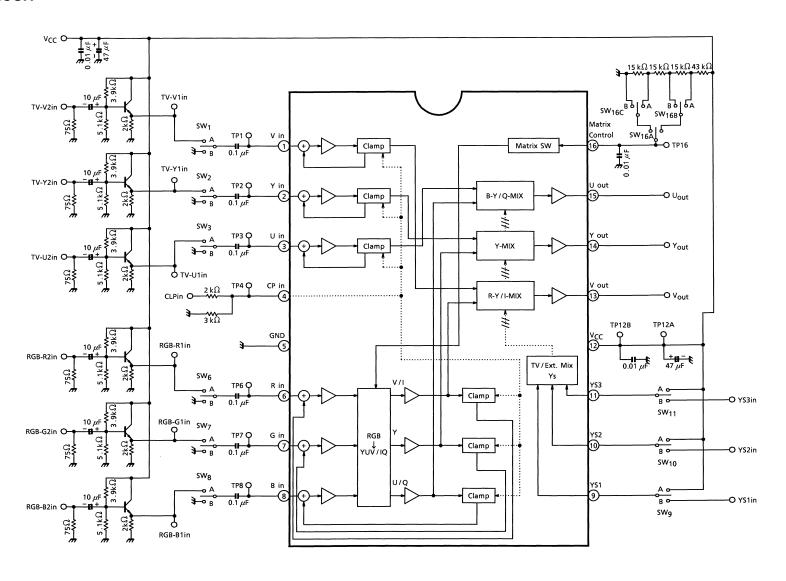
			TES		•	OTHERWIS	SE SPECIFIE	D, V _{CC} = 9 V and Ta = 25 ± 3°C)
NOTE	ITEM			SW MC		MEASURING METHOD		
		SW ₉	SW ₁₀	SW ₁₁	SW _{16A}	SW _{16B}	SW _{16C}	MEAGORING METHOD
A ₁₅	G Input Dynamic Range (Input to Pin 7)	Α	Α	Α	В	В	А	1) Measure each item in the same way as NOTE A ₁₄ . (SW ₇ = A, G-IN (pin 7) to Y-OUT (pin 14))
	(Matrix Mode)				Α	В	Α	DGP : "PAL"
	(Matrix Mode)				Α	Α	А	DGNU : NTSC, UV DGNI : NTSC, IQ
A ₁₆	B Input Dynamic Range (Input	Α	Α	Α	В	В	Α	1) Measure each item in the same way as NOTE A ₁₄ .
	to Pin 8)				Α	В	Α	(SW ₈ = A, B-IN (pin 8) to U-OUT (pin 15)) DBP : PAL
	(Matrix Mode)				Α	Α	Α	DBNU : NTSC, UV DBNI : NTSC, IQ
A ₁₇	YUV Input and Output	В	В	В	В	В	В	1) Input Signal 1 into pin 4.
	Frequency Characteristic (At -3 dB Point)							2) Supply DC 0V to YS1 (pin 9), YS2 (pin 10), YS3 (pin 11).
	(Through Mode)							3) Input Signal 2 (f_0 = 30 MHz, V_0 = 0.2 V_{p-p}) into V-IN (pin 1, SW ₁ = A).
		ı						Measure the amplitude during picture period on V-OUT (pin13). (v ₁₃ -30 MHz)
								5) Calculate the frequency gain by using the following equation and v ₁₃ , which is measured as the output amplitude in NOTE A ₁ . GfTRY = 20 ℓog (v ₁₃ -30 MHz / v ₁₃)
								6) Calculate following items, in the same way as clause 5). GfTY: Y-IN (pin 2) to Y-OUT (pin 14) GfTBY: U-IN (pin 3) to U-OUT (pin 15)

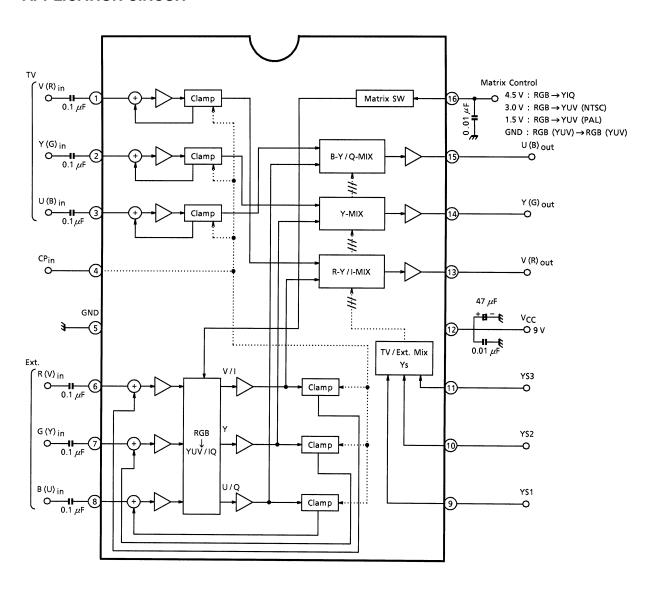

			TES	ST CONDITION	ON (UNLESS	D, V _{CC} = 9 V and Ta = 25 ± 3°C)		
NOTE	ITEM			SW MC		MEASURING METHOD		
		SW ₉	SW ₁₀	SW ₁₁	SW _{16A}	SW _{16B}	SW _{16C}	WEASONING WETTOD
A ₁₈	RGB Input and Output Frequency Characteristic (At -3 dB Point) (Through Mode)	A	А	А	В	В	В	1) In the same way as NOTE A_{17} , calculate items against R-IN (pin 6, SW ₆ = A), G-IN (pin 7, SW ₇ = A) and B-IN (pin 8, SW ₈ = A). GfRR: R-IN (pin 6) to V-OUT (pin 13) GfRG: G-IN (pin 7) to Y-OUT (pin 14) GfRB: B-IN (pin 8) to U-OUT (pin 15)
A ₁₉	Ys Switching Delay Time	-	_	_	В	В	В	 Input Signal 1 into pin 4. Input Signal 3 into R-IN (pin 6, SW₆ = A). Input Signal 4 into YS1 (pin 9), YS2 (pin 10), YS3 (pin 11). Measure (I) and (II) periods on V-OUT (pin 13). Measure in the same way as 2) to 3) for G-IN (pin 7, SW₇ = A) and B-IN (pin 8, SW₈ = A). R-IN (I): YSRYR (II): YSRYR G-IN (I): YSYG (II): YSYG B-IN (I): YSBYB (II): YSBBY
A ₂₀	Crosstalk between Each Input	A or B	A or B	A or B	В	В	В	 Input Signal into pin 4. Supply DC 0V to YS1 (pin 9), YS2 (pin 10), YS3 (pin 11). Input Signal 2 (f₀ = 4 MHz, V₀ = 0.5 V_{p-p}) into V-IN (pin 1, SW₁ = A). Changing SW₉, SW₁₀, and SW₁₁ against each case, measure each leak levels. Calculate the gains, input level to leak level.

TEST SIGNALS


Signal 1

Signal 2

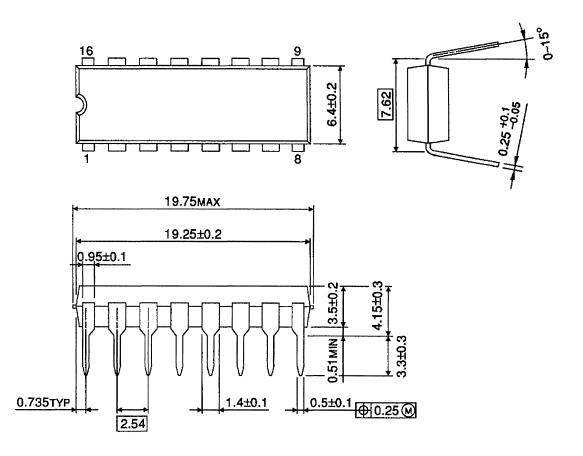

Signal 3


Signal 4

Output wave-form

TEST CIRCUIT

APPLICATION CIRCUIT

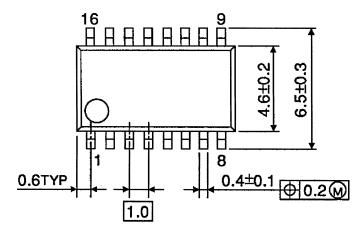


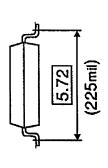
THE MIXING RATIO TABLE FOR EXTERNAL TO TV

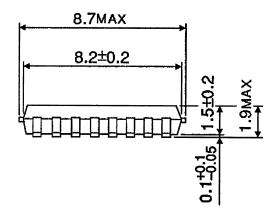
Ys1	Ys2	Ys3	EXT : TV
L	L	L	0:1
Н	L	L	0.3:0.7
L	Н	L	0.4:0.6
Н	Н	L	0.5 : 0.5
L	L	Н	0.6:0.4
Н	L	Н	0.7:0.3
L	Н	Н	0.8:0.2
Н	Н	Н	1:0

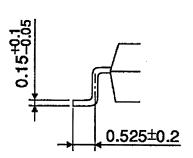
PACKAGE DIMENSIONS

DIP16-P-300-2.54A Unit: mm




Weight: 1.0g (Typ.)


Unit: mm


PACKAGE DIMENSIONS

SSOP16-P-225-1.00A

Weight: 0.14g (Typ.)

About solderability, following conditions were confirmed

- Solderability
 - (1) Use of Sn-63Pb solder Bath
 - · solder bath temperature = 230°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - · solder bath temperature = 245°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

24