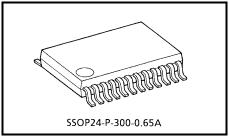
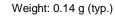
TOSHIBA Bipolar Linear IC Silicon Monolithic

TA2152FNG


Low Current Consumption Headphone Amplifier (for 1.5-V/3-V Use)

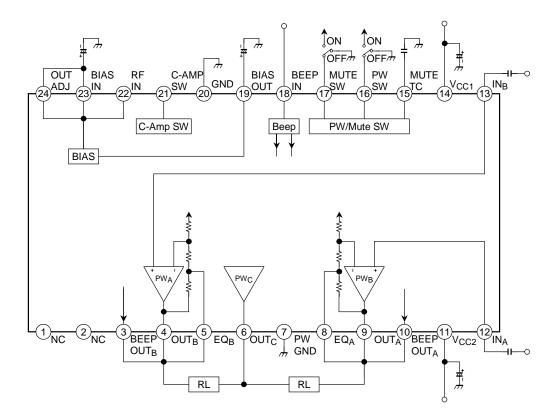

The TA2152FNG is a headphone amplifier of low current consumption type developed for portable digital audio. It is especially suitable for portable CD players, portable MD

players etc.

Features

- Low current consumption
 - The power drive stage can be driven using a single battery. As a result, overall current consumption is low.

- Built-in center amplifier switch For the output-coupling type, the consumption current has been decreased still further.
- Current value (V_{CC1} = 2.4 V, V_{CC2} = 1.2 V, f = 1 kHz, R_L = 16 Ω , Ta = 25°C, typ.)
 - Output-coupling type
 - No Signal: I_{CC} (V_{CC1}) = 0.4 mA, I_{CC} (V_{CC2}) = 0.3 mA
 - 0.1 mW × 2 ch: ICC (VCC1) = 0.5 mA, ICC (VCC2) = 2.2 mA
 - $0.5 \text{ mW} \times 2 \text{ ch}$: ICC (VCC1) = 0.5 mA, ICC (VCC2) = 5.0 mA
 - OCL type
 - No Signal: ICC (VCC1) = 0.7 mA, ICC (VCC2) = 0.7 mA
 - $0.1 \text{ mW} \times 2 \text{ ch}$: ICC (VCC1) = 0.7 mA, ICC (VCC2) = 4.5 mA
 - $0.5 \text{ mW} \times 2 \text{ ch}$: ICC (VCC1) = 0.8 mA, ICC (VCC2) = 10.0 mA
- Output power: P₀ = 8 mW (typ.)


$$(V_{CC1}$$
 = 2.4 V, V_{CC2} = 1.2 V, f = 1 kHz, R_L = 16 $\Omega,$ THD = 10%, Ta = 25°C)

- Built-in beep function
- Built-in low-pass compensation (output-coupling type)
- Built-in mute switch
- Built-in power switch
- Operating supply voltage range (Ta = 25°C)

VCC1 (opr) = 1.8 V~4.5 V

 $VCC2 (opr) = 0.9 V \sim 4.5 V$

Block Diagram (of OCL Application)

Pin Descriptions

Pin Voltage: Typical pin voltage for test circuit when no input signal is applied ($V_{CC1} = 2.4 \text{ V}$, $V_{CC2} = 1.2 \text{ V}$, Ta = 25°C)

Pin		Function	Internal Circuit	Pin
No.	Name	Function		Voltage (V)
1	NC	Not connected		
2	NC	Not connected		_
3	BEEP OUT _B	Outputs for beep signal		_
10	BEEP OUT _A			
4	OUT _B			
6	OUT _C	Outputs from power amplifier		0.6
9	OUT _A		9	
7	PW GND	GND for power drive stage	ND for power drive stage	
11	V _{CC2}	V_{CC} for power drive stage	Ť 슈 ¥	1.2
5	EQ _B	Low-pass compensation pins		0.6
8	EQA			
12	INA	Inputs to power amplifier	C 15 kΩ 43 kΩ	0.6
13	IN _B		$ \begin{array}{c} \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{K} \\ \mathbf$	
14	V _{CC1}	$V_{\mbox{CC}}$ for everything other than power drive stage	V _{CC2}	2.4
19	BIAS OUT	Bias circuit output		0.6
22	RF IN	Ripple filter input	(22) + +	1.1
23	BIAS IN	Bias circuit output		0.6
24	OUT ADJ	DC output voltage adjustment Either connect this pin or leave it open depending on the level of V_{CC2} . If the power supply of a 1.5 V system is applied to V_{CC2} . connect this pin to BIAS IN (pin 23). If the power supply of a 3 V system is applied to V_{CC2} , leave this pin open.		0.6

TA2152FNG

Pin No. Name		Function	Internal Circuit	Pin
				Voltage (V)
15	MUTE TC	Mute smoothing Reduces popping noises during switching.		_
16	PW SW	Power switch (IC ON :H level L IC OFF :L level Refer to application note (6)		
17	MUTE SW	Mute switch (Mute OFF: L level (Mute ON: H level Refer to application note (6)	$\begin{array}{c c} V_{CC1} \\ \hline \\ $	
18	BEEP IN	Beep signal input If the beep function is not used, this pin should be connected to GND.		_
20	GND	GND for everything other than power drive stage	_	0
21	C-AMP SW	Center amplifier switch C-Cup type: GND OCL type: Open	21 to center amplifier	

Application Notes

(1) Beep function

In Power Mute Mode, the beep signal from the microcomputer or other controlling device is input on the BEEP IN pin (pin 18). This signal is output as a current which flows to the load via the BEEP output pin (pin 3/10). The beep level is set to $V_0 = -50 \text{dBV}$ (R_L = 16 Ω (typ.)). For the beep signal timing, please refer to Figure 1.

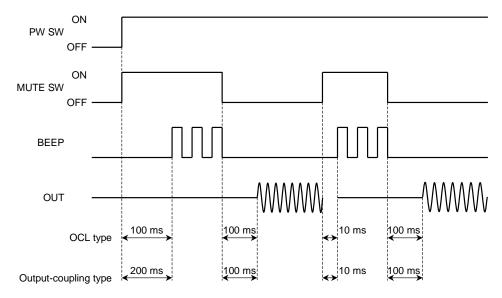


Figure 1 Timing chart for beep and output signals

(2) Low-cut compensation

For output-coupling type, the low-frequency range can be decreased using an output-coupling capacitor and a load ($f_c = 45 \text{ Hz}$ at $C = 220 \ \mu\text{F}$, $R = 16 \ \Omega$). However, since the capacitor is connected between the IC's output pin (pin 4/9) and EQ pin (pin 5/8), the low-frequency gain of the power amplifier increases, enabling low-cut compensation to be performed. For the response of capacitors of different values, please refer to Figure 2.

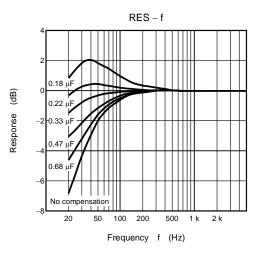


Figure 2 Capacitor response

(3) Adjustment of DC output voltage

Please perform the OUT ADJ pin (pin 24) as follows by the power supply of V_{CC1} and V_{CC2} .

• If a boost voltage is applied to VCC1, VCC2 is connected to a battery and the difference between VCC1 and VCC2 is greater than or equal to 0.7 V, short pins 23 and 24 together. In this case the DC output voltage

will be
$$\frac{V_{CC2}}{2}$$
.

• If the difference between VCC1 and VCC2 is less than 0.7 V, or if VCC1 and VCC2 are connected to the same power supply, leave pin 24 open.

In these cases the DC output voltage will be $\frac{V_{CC2} - 0.7 \, V}{2}$.

However, when the voltage level of V_{CC2} is high, the DC output voltage is will be set to approximately 1.4 V.

(4) RF IN pin

The ripple rejection ratio can by improved by connecting a capacitor to this pin. Connection of a capacitor is recommended, particularly for output-coupling type.

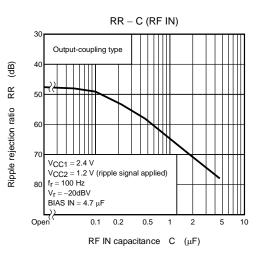


Figure 3 Improvement of ripple rejection ratio

(5) Output application of power amplifier

For output-coupling type the center amplifier is not used with the result that current consumption is low. Please set the C-AMP SW pin (pin 21) accordingly.

Output-coupling type: Pin 21 is connected to GND.

OCL type: Pin 21 is open.

(6) Switching pins

(a) PW SW

The device is ON when this pin is set to High. To prevent the IC being turned ON by external noise, it is necessary to connect an external pull-down resistor to the PW SW pin. The pin is highly sensitive.

(b) MUTE SW

If the MUTE SW pin is fixed to High, current will flow through the pin, even when the PW SW pin is in OFF Mode. To prevent the IC being turned ON by external noise, it is necessary to connect an external pull-down resistor.

The pop noise heard when the MUTE SW switch is turned ON or OFF can be reduced by connecting an external capacitor to the MUTE TC pin.

(c) Switch sensitivity (Ta = 25°C)

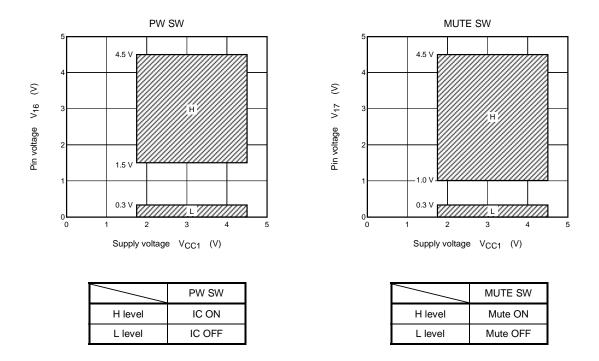


Figure 4 Switch sensitivity

(7) Miscellaneous

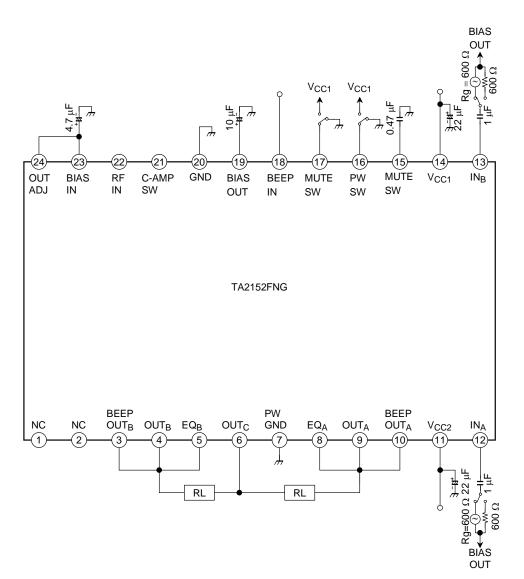
The following capacitors must have excellent temperature and frequency characteristics.

- Capacitor between VCC1 (pin 14) and GND (pin 20)
- Capacitor between VCC2 (pin 11) and PW GND (pin 7)
- Capacitor between BIAS IN (pin 23) and GND (pin 20)
- Capacitor between BIAS OUT (pin 19) and GND (pin 20)
- Capacitor between RF IN (pin 22) and GND (pin 20)

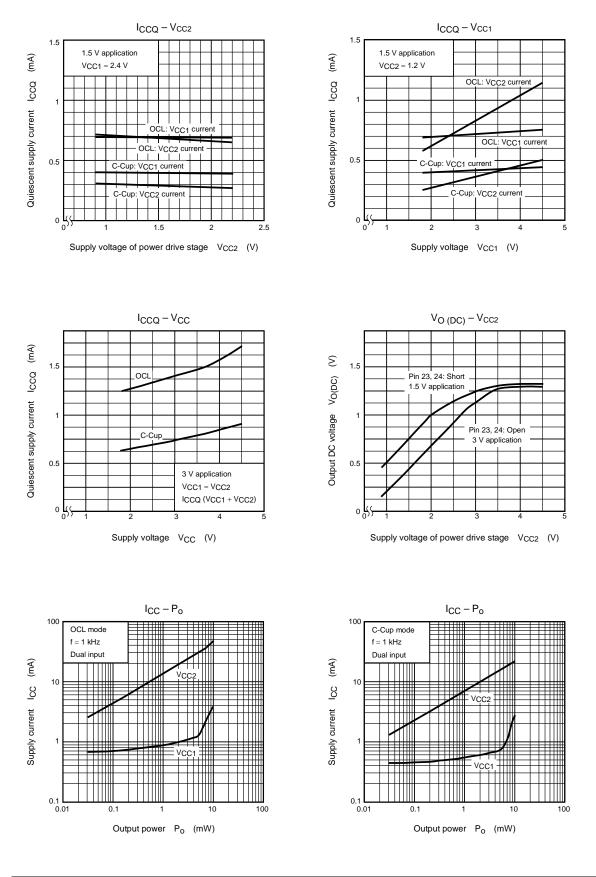
Absolute Maximum Ratings (Ta = 25°C)

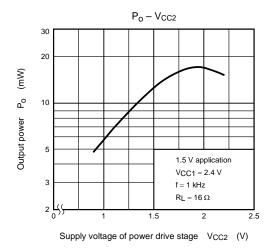
Characteristic	Symbol	Rating	Unit	
Supply voltage 1	V _{CC1}	4.5	v	
Supply voltage 2	V _{CC2}	4.5	v	
Output current	I _{o (peak)}	100	mA	
Power dissipation	P _D (Note)	500	mW	
Operating temperature	T _{opr}	-25~75	°C	
Storage temperature	T _{stg}	-55~150	°C	

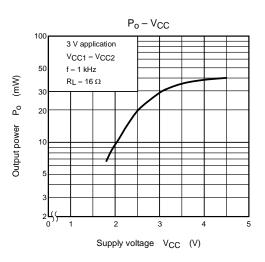
Note: Derated by 4 mW/°C above Ta = 25°C

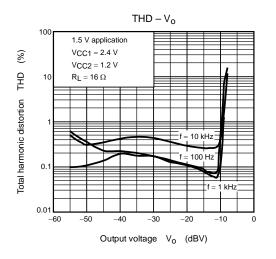

Electrical Characteristics

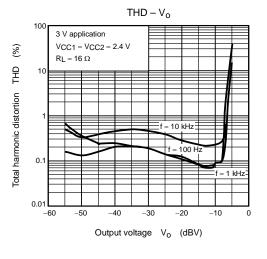
(Unless otherwise specified V_{CC1} = 2.4 V, V_{CC2} = 1.2 V, Rg = 600 Ω , R_L = 16 Ω , f = 1 kHz, Ta = 25°C, SW1: a, SW2: b, SW3: a)

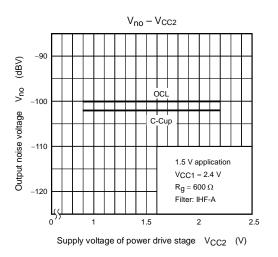

Characteristic	Symbol	Test Conditions	Min	Тур.	Max	Unit	
	I _{CCQ1}	IC OFF (V _{CC1}), SW1: b		0.1	5		
	I _{CCQ2}	IC OFF (V _{CC2}), SW1: b		0.1	5		
	I _{CCQ3}	OCL, Mute ON (V _{CC1}), SW2: a		400	600	μA	
	I _{CCQ4}	OCL, Mute ON (V _{CC2}), SW2: a		650	1400	μA	
Quiescent supply current	I _{CCQ5}	C-Cup, Mute ON (V _{CC1}), SW2: a		170	250		
	I _{CCQ6}	C-Cup, Mute ON (V _{CC2}), SW2: a		85	170		
	I _{CCQ7}	OCL, no signal (V _{CC1})		0.7	1.1	mA	
	I _{CCQ8}	OCL, no signal (V _{CC2})		0.7	1.5		
	I _{CCQ9}	C-Cup, no signal (V _{CC1})		0.4	0.6		
	I _{CCQ10}	C-Cup, no signal (V _{CC2})		0.3	0.6		
	I _{CC1}	OCL, 0.5 mW \times 2 ch (V _{CC1})		0.8		mA	
Power supply current during	I _{CC2}	OCL, 0.5 mW \times 2 ch (V _{CC2})		10.0	_		
drive	I _{CC3}	C-Cup, 0.5 mW \times 2 ch (V _{CC1})	_	0.5			
	I _{CC4}	C-Cup, 0.5 mW \times 2 ch (V _{CC2})		5.0	_		
Voltage gain	GV	$V_0 = -22 dBV$	9.5	11.5	13.5	dB	
Channel balance	СВ	$V_0 = -22 dBV$	-1.5	0	1.5	uв	
Output power	Po	THD = 10%	5	8		mW	
Total harmonic distortion	THD	$P_0 = 1 \text{ mW}$		0.1	1.0	%	
Output noise voltage	V _{no}	$Rg = 600 \Omega$, Filter: IHF-A, SW3: b	_	-100	-96	dBV	
Crosstalk	СТ	$V_0 = -22 \text{ dBV}$	-25	-35	_		
Ripple rejection ratio 1	RR1	Inflow to V _{CC1} , SW3: b $f_r = 100 \text{ Hz}, V_r = -20 \text{ dBV}$	-65	-85	_	dP	
Ripple rejection ratio 2	RR2	Inflow to V_{CC2} , SW3: b f _r = 100 Hz, V _r = -20 dBV	-85	-100	_	dB	
Muting attenuation ATT		$V_0 = -12 dBV$	-100	-115			
Beep sound output voltage	VBEEP (OUT)	$V_{BEEP (IN)} = 2 V_{p-p}$	-55	-50	-45	dBV	
PW SW ON current	116	$V_{CC1} = 1.8 \text{ V}, V_{CC2} = 0.9 \text{ V}$	5			μA	
PW SW OFF voltage	V16	$V_{CC1} = 1.8 \text{ V}, V_{CC2} = 0.9 \text{ V}$	0		0.3	V	
Mute SW ON current	117	$V_{CC1} = 1.8 \text{ V}, V_{CC2} = 0.9 \text{ V}$	5			μA	
Mute SW OFF voltage	V17	V _{CC1} = 1.8 V, V _{CC2} = 0.9 V	0	_	0.3	V	

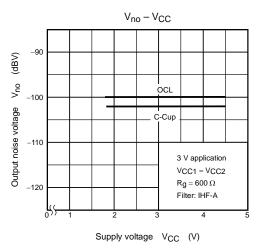

<u>TOSHIBA</u>

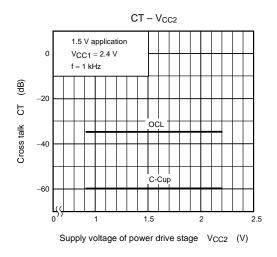

Test Circuit

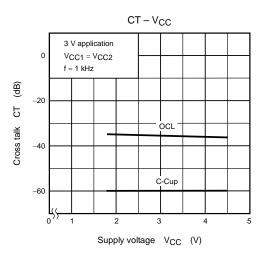


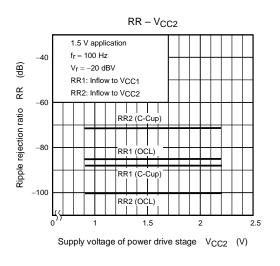

Characteristic Curves (unless otherwise specified, V_{CC1} = 2.4 V, V_{CC2} = 1.2 V, R_g = 600 Ω , R_L = 16 Ω , f = 1 kHz, Ta = 25°C)

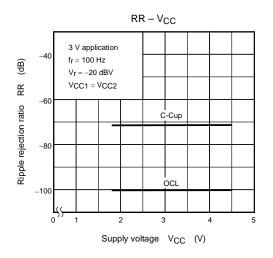


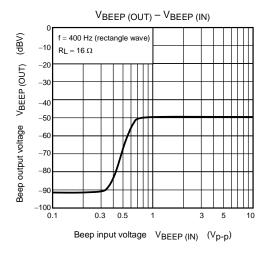


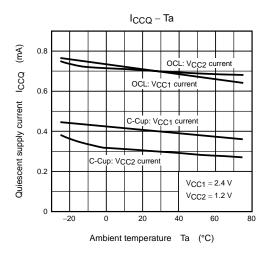


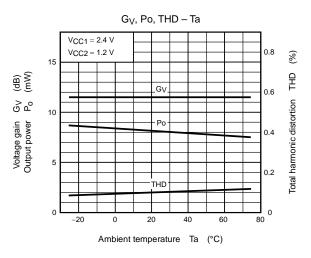


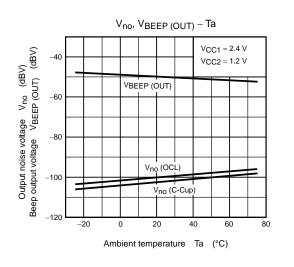








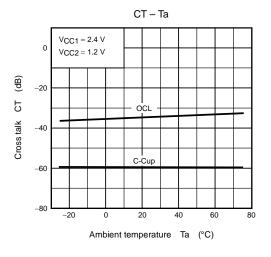


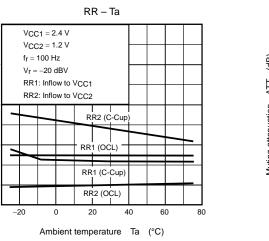


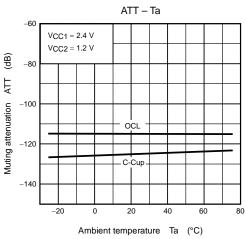
-20

-40

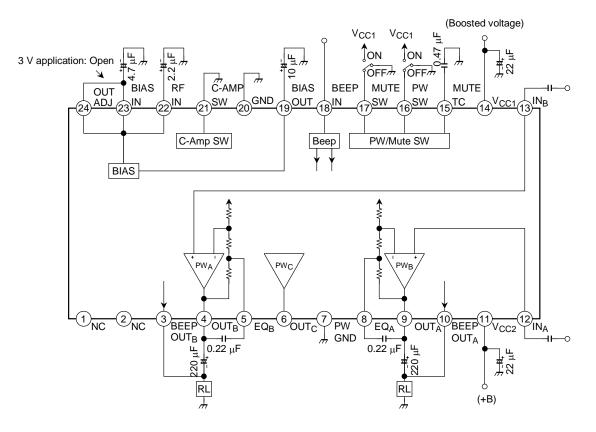
-60

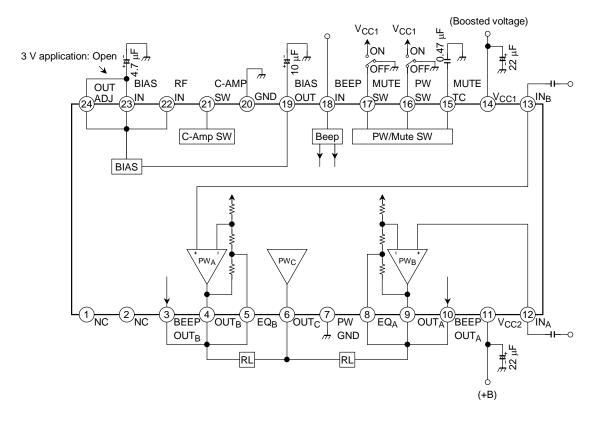

-80

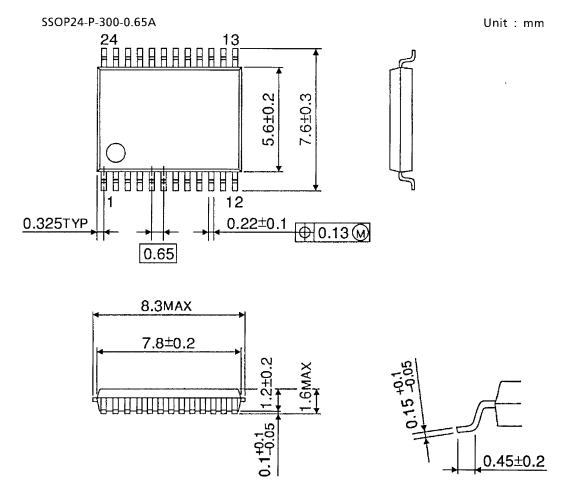

-100


(qB)

RR


Ripple rejection ratio




Application Circuit 1 (1.5 V Output Coupling Type)

Application Circuit 2 (1.5 V OCL Type)

Package Dimensions

Weight: 0.14 g (typ.)

About solderability, following conditions were confirmed

Solderability

(1) Use of Sn-63Pb solder Bath

- solder bath temperature = 230°C
- dipping time = 5 seconds
- the number of times = once
- use of R-type flux
- (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - solder bath temperature = 245°C
 - dipping time = 5 seconds
 - the number of times = once
 - use of R-type flux

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.