TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA1241ANG

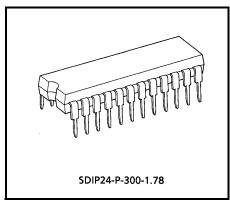
DEFLECTION PROCESSOR IC FOR TVs

Ideal for large-inch CRT, the TA1241ANG is an IC for deflection correction and vertical / horizontal picture size adjustment, with a 24-pin plastic package.

The TA1241ANG can control all kinds of picture adjustment functions through I 2 C-bus communications.

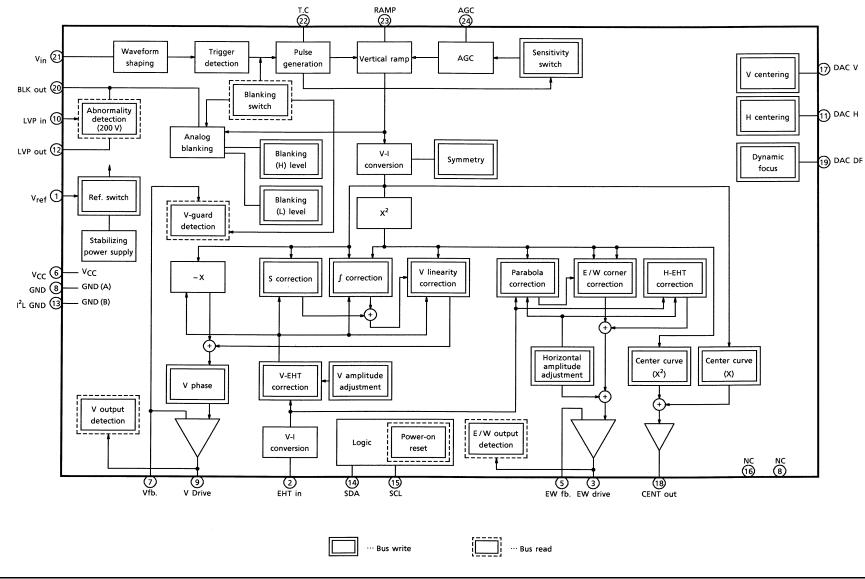
FEATURES

BUS write mode

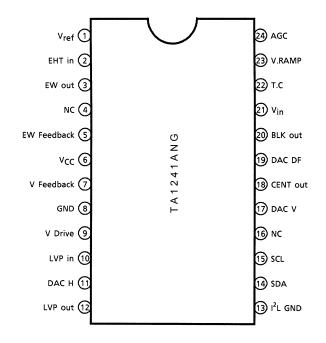

- Vertical amplitude adjustment
- Vertical position adjustment
- Vertical linearity correction
- Vertical S correction
- Vertical J correction
- Vertical EHT correction
- Trapezium correction
- Horizontal amplitude correction
- Horizontal EHT correction
- Parabola correction
- Corner correction
- Center curve correction (SAW, PAR)

BUS read mode

- V-guard detection
- LVP detection
- V output detection
- E / W output detection


Pin output

- V centering (DAC)
- H centering (DAC)
- Dynamic focus (DAC)
- Analog blanking
- LVP detection



Weight: 1.22 g (Typ.)

BLOCK DIAGRAM

PIN CONNECTION

PIN FUNCTION

PIN No.	PIN NAME	FUNCTION	INTERFACE	INPUT / OUTPUT SIGNAL
1	V _{ref}	Bias voltage external input pin for the V and E / W blocks. BUS write mode controls the switching.		_
2	EHT in	EHT input pin.		_
3	EW Drive	E / W drive output pin. Also performs E / W detection in BUS read mode.		_
5	EW Feedback	E / W feedback pin.		<u>~~</u> ₀v
4	NC	—		—
6	V _{CC}	V _{CC} pin. Connect 9 V (Typ.).	_	—

TA1241ANG

PIN No.	PIN NAME	FUNCTION	INTERFACE	INPUT / OUTPUT SIGNAL
7	V Feedback	Vertical negative feedback input pin. When voltage on this pin equals or exceeds 6 V, the device outputs a blanking signal to pin 20 and sends discriminating data to BUS read.		_
9	V Drive	Vertical signal output pin. Also performs vertical output detection in BUS read mode.		─ ─ └ ^{2.75 ∨} ₀ ∨
8	GND	GND pin.	_	—
10	LVP in	Used to connect reference voltage to protect the deflection block from a low-voltage.		_
12	LVP out	Outputs abnormal power supply detection result. Also performs LVP detection in BUS read mode.	BUS READ READ BUS READ READ READ READ READ READ READ READ	OK : DC0.7V NG : DC5.0V
11	DAC H	DAC output pin for horizontal centering.		_
17	DAC V	DAC output pin for vertical centering.	11, 17, 19	_
19	DAC DF	DAC output pin for dynamic focus.	T C Y S B	_
13	I ² L GND	GND pin for the I ² L block.	_	_
14	SDA	SDA pin for the I ² C BUS.		_

PIN No.	PIN NAME	FUNCTION	INTERFACE	INPUT / OUTPUT SIGNAL
15	SCL	SCL pin for the I ² C BUS.		—
16	NC	_	_	_
18	CENT out	Outputs center curve correction waveform.		_
20	BLK out	Analog blanking output pin. Open collector output. In BUS write mode, outputs a vertical blanking signal for the vertical RAMP.		
21	V in	Inputs trigger pulse. Detects the falling edge of the input pulse and generates a trigger pulse to the next-stage circuit.		J ^{3v} _{0v}

TA1241ANG

PIN No.	PIN NAME	FUNCTION	INTERFACE	INPUT / OUTPUT SIGNAL
22	T.C	This pin connects a pulse-shaping filter.		_
23	V RAMP	Used to connect a capacitor to generate a vertical RAMP signal.		5.5 V 3.5 V
24	AGC	Used to connect a filter to automatically adjust the vertical RAMP oscillation amplitude.		_

I²C BUS MAP

Write data map

IC address : 10001100 (8CH)

FUNCTION	SUB A MSB	DDRESS LSB	DATA MSB LSB	PRESET MSB LSB	RANGE
PICTURE HEIGHT		0 0 0 0			-48~+48%
V-LINIARITY	0 0 0 0	0 0 0 1	× × × 0 0 0 0 0		-13~+13%
V-S CORRECTION	0 0 0 0	0 0 1 0	× × 0 0 0 0 0 0		-24~+24%
V-SHIFT. AGC, REG	0 0 0 0	0 0 1 1	× v × A × O O ×	0 0 0 0 0 0 1 0	−570~+570 mV
v-COMPENSATION	0 0 0 0	0 1 0 0	× × × × × 0 0 0	0 0 0 0 0 0 0 0	0~9%
PICTURE WIDTH	0 0 0 0	0 1 0 1	× × 0 0 0 0 0 0	0010 0000	1.7~6.5 V
E-W PARABORA	0 0 0 0	0 1 1 0	× × 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0~4.4 V
E-W CORNER	0 0 0 0	0 1 1 1	× × × 0 0 0 0 0	0 0 0 1 0 0 0 0	-3.2~+3.2%
TRAPEZIUM	0 0 0 0	1 0 0 0	× 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0	0~2.4 V
H-COMP, H-CENT DAC	0 0 0 0	1 0 0 1	H-CENT DAC × 0 0 0 × 0 0 0	0 0 0 0 0 0 0 0	0~9%, 1~5 V
V-∫CORRECT, BLK-SW	0 0 0 0	1 0 1 0	× × B × 0 0 0 0	0 0 0 0 0 0 0 0	0~4%
V CENT DAC	0 0 0 0	1011	× 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0.5~5 V
ANAROG BLK-VH	0 0 0 0	1 1 0 0	× × × 0 0 0 0 0	0 0 0 1 0 0 0 0	−640~+640 mV
ANAROG BLK-VL	0 0 0 0	1 1 0 1	× × × 0 0 0 0 0	0 0 0 1 0 0 0 0	−640~+640 mV
CENT PAR, SAW	0 0 0 0	1 1 1 0	× 0 0 0 × 0 0 0	0100 0100	-4~+4 ∨, -2~+2 ∨
DYNAMIC FORCUS	0 0 0 0	1 1 1 1	× × 0 0 0 0 0 0	0 0 0 0 0 0 0 0	-0.5~5 V

Note: O : Used bit, × : Unused bit

A : AGC switching (DATA = 0...HIGH response, DATA = 1...LOW response)

V : Power supply switching

(DATA = 0...Stabilization power supply, DATA = 1...External power supply)

B : Blanking switch (DATA = 0...Enabled, DATA = 1...Disabled)

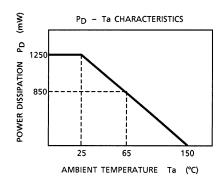
When the uppermost bit of the subaddress is high, auto-increment mode is set.

Read data map

IC address 10001101 (8DH)

	MSB							LSB
FUNCTION DATA	NON	NON	NON	LVP	V-GUAD	E-Wout	Vout	POW DISCRIMI- NATION
0	_	—	—	OFF	OFF	No signal	No signal	OFF
1	_	—	—	ON	ON	Signal	Signal	ON

DEFLECTION CORRECTION TABLE


FUNCTION	OUTPUT WAVEFORM	PICTURE CHANGE	VARIABLE RANGE
Vertical Amplitude Adjustment [PICTURE HEIGHT]		Typ. Large value	-48 to +48%
Vertical Linearity Correction [V-LINEARITY]		Typ. Large value	-13 to +13%
Vertical S Correction [V-S CORRECTION]		Typ. Large value	-24 to +24%
Vertical ∫ Correction [V-∫ CORRECTION]		Typ. Large value	0 to 4%
Vertical EHT Correction [V-COMPENSATION]		Typ. Large value	0 to 9%
Vertical Phase Correction [V-SHIFT]		(Solid line at left)	−800 to +800 mV

FUNCTION	OUTPUT WAVEFORM	PICTURE CHANGE	VARIABLE RANGE
Parabola Amplitude Adjustment [E-W PARABOLA]		Typ. Small value	0 to 5.6 V
Corner Correction [E-W CORNER]		Typ. Large value	-3.2 to +3.2 V
Horizontal EHT Correction [H-COMPENSATION]		Typ. Large value	0 to +9%
Horizontal Amplitude Adjustment [PICTURE WIDTH]		Typ. Large value	1.6 to 7.3 V
Parabola Symmetry Correction [TRAPEZIUM]		Typ. Small value	-9 to +9%
Center Curve SAW Correction [CENT SAW]		Typ. Large value	-2 to +2 V
Center Curve Parabola Correction [CENT PAR]		Typ. Large value	-1 to +1 V

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTICS	SIGNAL	RATING	UNIT
Power Supply Voltage	V _{CC}	12	V
Input pin voltage	V _{in}	$\begin{array}{c} GND-0.3 \ to \\ V_{CC}+0.3 \end{array}$	V
Power Dissipation	P _D MAX	1250 (Note)	mW
Operating Temperature	T _{opr}	-20 to 65	°C
Storage Temperature	T _{stg}	-55 to 150	°C

Note: When using at temperatures higher than 25°C, decrease maximum power dissipation by 10 mW for every 1°C over 25°C.

OPERATING CONDITION

CHARACTERISTICS	SYMBOL	MIN	TYP.	MAX	UNIT
Power Supply Voltage	V _{CC}	8.5	9.0	9.5	V

ELECTRICAL CHARACTERISTICS

DC ELECTRICAL CHARACTERISTICS (Test circuit 1)

PIN No.	PIN NAME	SYMBOL	UNIT		LECTRICA RACTERIS		TEST METHOD (CONDITIONS $V_{CC} = 9 \text{ V}$, Ta = 25±3°C)		
PIN NO.	PIN NAME	STMBOL	UNIT	MIN	LIMITS TYP.	MAX	BUS DATA AND SWITCHING MODE []; SUBADDRESS, (); DATA	TEST METHOD	
1	V _{ref}	V ₁		6.0	6.3	6.6			
2	EHT	V ₂		5.7	6.2	6.7			
3	EW Drive	V ₃		5.2	5.5	5.8			
5	EW Feedback	V ₅		8.7	9.0	9.3			
7	V Feedback	V ₇		2.0	2.4	2.8			
9	V Drive	V ₉		0.5	0.8	3.4			
10	LVP in	V ₁₀		8.85	8.95	9.05			
11	DAC H	V ₁₁		0.5	1.3	2.1			
12	LVP out	V ₁₂		0.0	0.8	1.6	No bus input	Measure the DC voltage of each pin.	
14	SDA	V ₁₄	V	4.8 5.1	5.1	5.4			
15	SCL	V ₁₅		4.8	5.1	5.4			
17	DAC V	V ₁₇		0.0	0.8	1.6			
18	CENT out	V ₁₈		5.5	6.0	6.5			
19	DAC DF	V ₁₉		0.0	0.8	1.6			
20	BLK out	V ₂₀		0.0	0.0	1.0			
21	V _{in}	V ₂₁		—	0.0	_			
22	T.C	V ₂₂		3.7	4.0	4.3]		
23	V.RAMP	V ₂₃		2.2	2.5	2.8]		
24	AGC	V ₂₄		_	0.0]		
Power Su	oply Current (V _{CC} = 9 V)	I _{CC}	mA	31.0	47.0	63.0	No bus input	Open openland, connect an ammeter between TP4A and TP4B, and measure the sink current.	

AC ELECTRICAL CHARACTERISTICS (Test circuit 2)

No	CHARACTERISTIC		UNIT		ECTRIC ACTERI		TEST METHOD (CONDITI	ONS V _{CC} = 9 V, Ta = 25±3°C)
No.	CHARACTERISTIC	SYMBOL	UNIT	MIN	LIMITS TYP.	MAX	BUS DATA AND SWITCHING MODE []; SUBADDRESS, (); DATA	TEST METHOD
1	Vertical Trigger Input Shaping Voltage	V _{TH21}	V	0.7	1.0	1.4	All PRESET values, all SW-A	 (1) TP21 input : The following symbols (trigger pulse) 0 V
2	Pulse Generator Circuit Clamping Voltage	V _{H22}	V	3.8	4.0	4.2	All PRESET values, all SW-A	 (1) TP21 input : The above trigger pulse Wave height = 3 V (2) Observe the TP22 and TP23 waveforms with an oscilloscope. Measure the following V_{H22} voltage: TP22 waveform TP23 waveform
3	Pulse Generator Circuit Shaping Voltage 1	V _{M22}	V	2.8	3.0	3.2	All PRESET values, all SW-A	Measure V _{M22} as above.
4	Pulse Generator Circuit Shaping Voltage 2	V _{L22}	V	0.9	1.0	1.1	All PRESET values, all SW-A	Measure V_{L22} as above.
5	Vertical Ramp Amplitude	V _{P23}	V _{p-p}	1.9	2.0	2.1	All PRESET values, all SW-A	 TP21 input : Same as 2 above (trigger pulse). Measure the TP23 waveform (vertical ramp) amplitude.

Na	CHARACTERISTIC	SYMBOL	UNIT		ECTRIC ACTERI		TEST METHOD (CONDITI	ONS V _{CC} = 9 V, Ta = 25±3°C)
No.	CHARACTERISTIC	STIVIDOL		MIN	LIMITS TYP.	MAX	BUS DATA AND SWITCHING MODE []; SUBADDRESS, (); DATA	TEST METHOD
6	Vertical AMP Amplification	Gv	dB	20	23	26	All PRESET values, all SW ₇ -B	(1) No TP21 input (2) V_{DC} input : DC voltage is variable (0 to 6 V) (3) Measure the TP9 voltage change in relation to the change in the TP7 voltage and calculate the following G_V . TP9 DC V_{H9} V_{L9} V_{L9} V_{V_7} V_{V_7} V_{P7} DC
7	Vertical AMP Maximum Output Voltage	V _{H9}	V	1.80	2.60	3.40	All PRESET values, SW ₇ -B	Measure V _{H9} as above.
8	Vertical AMP Minimum Output Voltage	V _{L9}	V	0	0	0.3	All PRESET values, SW7-B	Measure V_{L9} as above.
9	Vertical AMP Maximum Output Current	I _{max9}	mA	18.0	25.0	32.0	All PRESET values, SW ₇ -B	 (1) Set V_{DC} to 6V as above. (2) Connect an ammeter between TP9 and GND and measure the current.
10	Vertical NF Saw Wave Amplitude	V _{P7}	V _{p-p}	1.40	1.60	1.80	All PRESET values, all SW-A	(1) TP21 inpu : Same as 2 above (trigger pulse).(2) Measure the TP7 vertical saw wave amplitude.
11	Vertical Amplitude Variable Range	V _{PH}	%	±45.0	±48.0	±51.0	[00] (00) (7F), all SW-A	 (1) TP21 input : Same as 2 above (trigger pulse). (2) Measure the TP7 amplitude V_{P7} (00) when set the subaddress [00] to (00). (3) Next, measure the TP7 amplitude V_{P7} (7F) when set the subaddress [00] to (7F). V_{PH} = ± V_{P7}(7F) - V_{P7}(00) / V_{P7}(7F) + V_{P7}(00) × 100 (%)

No.	CHARACTERISTIC	SYMBOL	UNIT			STICS		DNS V _{CC} = 9 V, Ta = 25±3°C)
				MIN	LIMITS TYP.	MAX	BUS DATA AND SWITCHING MODE []; SUBADDRESS, (); DATA	TEST METHOD
12	Vertical Linearity Maximum Correction	VL	%	±10.0	±12.5	±15.0	[08] adjustment, all SW-A [01] (00) (10) (1F)	(1) Set the data of subaddress [06] to (3F). Set the data of subaddress [05] to (3F). Change the subaddress [08] data so that the TP5 parabola waveform is symmetrical. (2) Set the data of subaddress [06] to (00). Set the data of subaddress [05] to (20). (3) When set the data of subaddress [01] to (10), measure the TP7 waveform V ₁ (10) and V ₂ (10) (4) Likewise, when set the data of subaddress [01] to (00) and (1F), measure V ₁ (00), V ₂ (00), V ₁ (1F), and V ₂ (1F). $ \frac{V_1}{V_2} + \frac{V_1(00) - V_1(1F) + V_2(1F) - V_2(00)}{2 \times [V_1(10) + V_2(10)]} \times 100 $

		0.445.01			ECTRIC ACTERI		TEST METHOD (CONDITIO	DNS V _{CC} = 9 V, Ta = 25±3°C)
No.	CHARACTERISTIC	SYMBOL	UNIT		LIMITS TYP.		BUS DATA AND SWITCHING MODE []; SUBADDRESS, (); DATA	TEST METHOD
13	Vertical S Maximum Correction	Vs	%		±24.0		[08] adjustment, all SW-A [02] (00) (3F)	(1) Same as 12 above. (2) Measure the amplitude V _{S7} (00) of TP7 when set the data of subaddress [02] to (00). (3) Measure the amplitude V _{S7} (3F) of TP7 when set the data of subaddress [02] to (3F). V _{S7} (00) V _{S7} (3F) V _{S7} (00) V _{S7} (3F) V _{S7} (00) V _{S7} (3F) V _{S7} (00) V _{S7} (3F) V _{S7} (00)+V _{S7} (3F) ×100 %
14	Vertical ∫ Maximum Correction	Vj	%	3.0	5.0	7.0	[08] adjustment, all SW-A [0A] (00) (0F)	 (1) Same as 13 above. (2) Measure the amplitude V_{j7} (00) of TP7 when set the data of subaddress [0A] to (00). (3) Measure the amplitude V_{j7} (0F) of TP7 when set the data of subaddress [0A] to (0F). V _{j7} (0F) V _{j7} (00) V _{j7} (0F) V _{j7} (00) V _j = ± V _{j7} (0F) -V _{j7} (00) V _j = ± V _{j7} (0F) -V _{j7} (00)

	CHARACTERISTIC	SYMBOL	UNIT		ECTRIC ACTERI		TEST METHOD (CONDITION	ONS V _{CC} = 9 V, Ta = 25±3°C)
No.	CHARACTERISTIC	SYMBOL	UNIT		LIMITS TYP.	MAX	BUS DATA AND SWITCHING MODE []; SUBADDRESS, (); DATA	TEST METHOD
15	Vertical NF Center Voltage	Vc	V	3.8	4.0	4.2	[08] adjustment, all SW-A	(1) Same as 12 above. (2) Observe the TP7 waveform and measure the V _C shown below. $V_{C} - \frac{1}{10 \text{ ms}} - \frac{10 \text{ ms}}{10 \text{ ms}}$
16	Vertical NF DC Change	V _{DC}	mV	±480	±560	±640	[08] adjustment, all SW-A [03] (00) (06)	(1) Same as 15 above. (2) Measure the vertical NF center voltage V _C (00) when set the data of subaddress [03] to (00). (3) Measure the vertical NF center voltage V _C (06) when set the data of subaddress [03] to (06). $V_{DC} = \pm \frac{V_{C}(06) - V_{C}(00)}{2} (mV)$
17	Vertical NF EHT Correction	VEHT	%	8	9	10	[08] adjustment, SW ₂ -B [04] (00) (07)	 (1) Same as 12 above. (2) V_{DC} input : DC voltage=0V (3) Observe TP7 waveform. (4) Measure the amplitude V_{EHT} (00) of TP7 when set the data of subaddress [04] to (00). (5) Measure the amplitude V_{EHT} (07) of TP7 when set the data of subaddress [04] to (07). V_{EHT} = V<u>EHT(00)-VEHT(07)</u>×100(%)

No.	CHARACTERISTIC	SYMBOL	UNIT		ECTRIC ACTERI LIMITS	ISTICS	TEST METHOD (CONDITION BUS DATA AND SWITCHING MODE	DNS V _{CC} = 9 V, Ta = 25±3°C)
				MIN	TYP.	MAX	[]; SUBADDRESS, (); DATA	TEST METHOD
18	EHT Input D Range 1	V _{H2}	V	5.7	6.2	6.7	[08] adjustment, SW ₂ -B [04] (07)	(1) Same as 17 above. (2) Change the V _{DC} voltage from 1V to 7V. (3) Measure the change in the TP7 voltage at this time and measure the TP2 voltage V _{H2} . TP7 amplitude V_{L2} V _{H2} TP2 DC
19	EHT Input D Range 2	V _{L2}	V	1.3	1.8	2.3	[08] adjustment, SW ₂ -B [04] (07)	Measure the TP2 voltage V_{L2} as above.
20	E / W NF Maximum DC Value	V _{H5}	V	5.5	6.2	6.9	[08] adjustment, SW-A [05] (00)	(1) Same as 12 above.(2) Measure the TP5 voltage.
21	E / W NF Minimum DC Value	V _{L5}	V	1.5	1.7	1.9	[08] adjustment, all SW-A [05] (3F)	(1) Same as 12 above.(2) Measure the TP5 voltage.
22	E / W NF Maximum Parabola Value	V _{PB}	V _{p-p}	3.0	3.9	4.8	[08] adjustment, SW ₂ -B [05] (3F) [06] (3F)	 (1) V_{DC} input : 7V (2) Measure the TP5 parabola amplitude. ¹/_{VPB} ¹/_{TP5} waveform

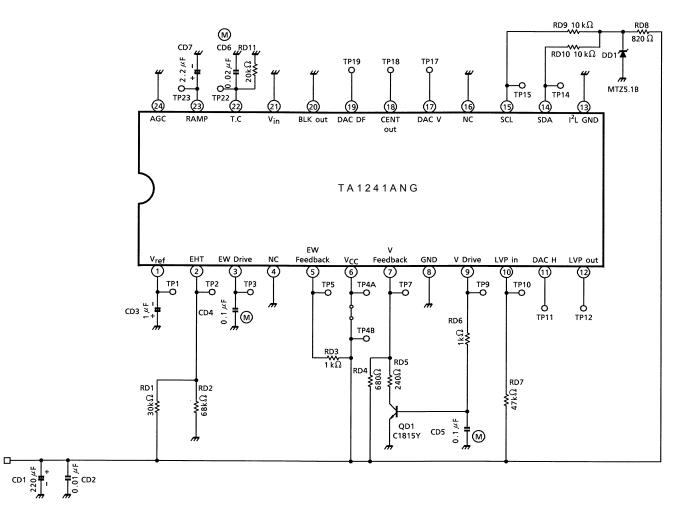
		0.445.01			ECTRIC ACTERI		TEST METHOD (CONDITI	ONS V _{CC} = 9 V, Ta = 25±3°C)
No.	CHARACTERISTIC	SYMBOL	UNIT	MIN	LIMITS TYP.	MAX	BUS DATA AND SWITCHING MODE []; SUBADDRESS, (); DATA	TEST METHOD
23	E / W NF Corner Correction 1	V _{CR1}	V _{p-p}	1.80	2.50	3.20	[08] adjustment, SW ₂ -B [05] (3F) [06] (3F) [07] (10) (1F)	 (1) V_{DC} input : 7 V (2) Observe the TP5 parabola amplitude. (3) Measure the amplitude V_{CR1} (10) when set the data of subaddress [07] to (10). (4) Measure the amplitude V_{CR1} (1F) when set the data of subaddress [07] to (1F).
23'	E / W NF Corner Correction 2	V _{CR2}	V _{p-p}	2.30	3.20	4.10	[08] adjustment, SW ₂ -B [05] (3F) [06] (20) [07] (00) (1F)	 V_{DC} input : 7 V Measure the TP5 parabola amplitude. Measure the amplitude V_{CR2} (00) when set the data of subaddress [07] to (00). Measure the amplitude V_{CR2} (1F) when set the data of subaddress [07] to (1F). V_{CR2} = V_{CR2} (00) - V_{CR2} (1F)
24	Parabola Symmetry Correction Change	V _{TR}	%	±11.0	±13.0	±15.0	[08] (00) (7F), all SWA	 (1) Measure the following as in 15 above. (2) Measure the TP7 center voltage V_C (00) when set the data of subaddress [08] to (00). (3) Measure the voltage V_C (7F) when set the data of subaddress [07] to (7F). V_{TR} = ± V_C(00) - V_C(7F) × 100 (%) V_{P7} is the value measured in 10 above.

					ECTRIC ACTERI		TEST METHOD (CONDITIO	ONS V _{CC} = 9 V, Ta = 25±3°C)
No.	CHARACTERISTIC	SYMBOL	UNIT	MIN	LIMITS		BUS DATA AND SWITCHING MODE []; SUBADDRESS, (); DATA	TEST METHOD
25	E / W Parabola EHT Correction	V _{EH1}	%	2.0	3.3	4.5	[08] adjustment, SW ₂ -B [05] (3F) [06] (3F)	(1) V_{DC} input : DC voltage is variable (2) Measure the TP5 parabola amplitude V_{EH} (7) when DC = 7 V. (3) Likewise, measure the amplitude V_{EH} (1) when DC = 1 V. $V_{EH1} = \frac{V_{EH}(7) - V_{EH}(1)}{V_{EH}(7)} \times 100 (\%)$
26	E / W DC EHT Correction	V _{EH2}	V	0.6	1.0	1.4	[08] adjustment, SW ₂ -B [05] (3F) [06] (3F) [09] (00) (07)	(1) V_{DC} input : DC voltage = 1 V (2) Measure the TP5 parabola phase center voltage V_{PC} (00) when set the data of subaddress [09] to (00). (3) Likewise, measure the voltage V_{PC} (07) when set the data of subaddress [09] to (07). V_{PC} (00) V_{PC} (00) V_{PC} (00) $V_{EH2} = V_{PC}$ (07) - V_{PC} (00) (V)
27	E / W Amp Maximum Output Current	I _{max3}	mA	0.14	0.20	0.27	All PRESET values, all SW-A	(1) Connect an ammeter between TP3 and GND.(2) Read the current.
28	AGC Operating Current 1	I _{AGC0}	μΑ	250	330	410	All PRESET values, SW ₂₄ -B	 (1) TP21 input : Same as 2 above (trigger pulse). (2) Monitor the TP24 waveform. Measure the V_x below. TP24 waveform I_{AGC0} = V_x ÷ 200 (μA) (I_{AGC1})

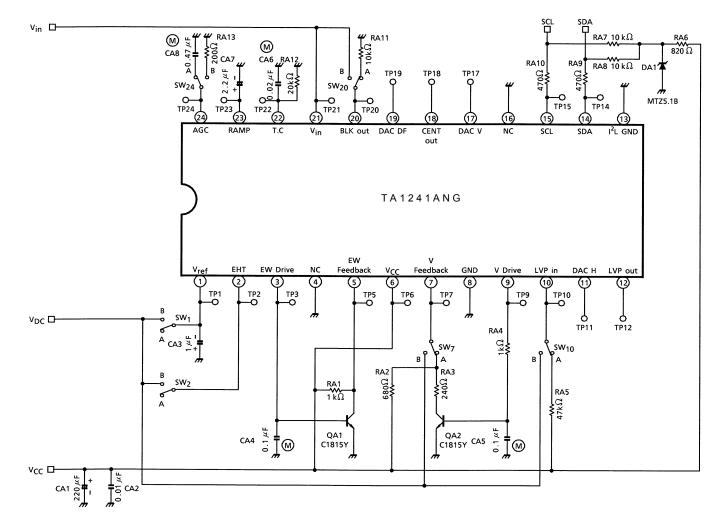
No	CHARACTERISTIC	SYMBOL	UNIT		ECTRIC ACTERI		TEST METHOD (CONDITI	ONS V _{CC} = 9 V, Ta = 25±3°C)
No.	CHARACTERISTIC	STNBUL	UNIT	MIN	LIMITS TYP.	MAX	BUS DATA AND SWITCHING MODE []; SUBADDRESS, (); DATA	TEST METHOD
29	AGC Operating Current 2	I _{AGC1}	μA	60	83	105	[03] (12) SW ₂₄ -B	Calculate, as above, I_{AGC1} when set the data of subaddress [03] to (12).
								(1) V _{DC} input : DC voltage = 5.5 V
30	Analog Blanking Output Current	I _{B20}	mA	0.400	0.650	0.800	All PRESET values, SW ₇ -B	(2) Connect an ammeter between TP20 and GND and measure the current.
								(1) Same as 30 above.
31	Upper Blanking Level	V _{H20}	V	5.25	5.50	5.75	All PRESET values, SW7-B	(2) V_{DC} input : DC voltage = variable (4.0 to 5.5 V)
51		♥ H20	v	5.25	5.50	0.70	AIT REDET VAIDES, OW /-D	(3) Measure the V _{DC} input voltage V _{H20} when the output current reaches half the output current measured above.
32	Upper Blanking Change	V _{HC20}	mV	±485	±570	±655	[0C] (00) (1F) SW ₇ -B	Measure V_{H20} (00) and V_{H20} (1F) when set the data of subaddress [0C] to (00) and (1F) respectively.
								V _{HC20} =±[V _{H20} (1F) - V _{H20} (00)] / 2 (mV)
								(1) Same as 30 above.
33	Lower Blanking Level	V _{L20}	V	3.30	3.50	3.70	All PRESET values, SW7-B	(2) V_{DC} input : DC voltage = variable (2.5 to 4.0 V)
55		VL20	v	5.50	5.50	5.70	AIT REDET VAIDES, OW /-D	(3) Measure the V _{DC} input voltage V _{L20} when the output current reaches half the output current of 30 above.
34	Lower Blanking Change	V _{LC20}	mV	±485	±570	±655	[0D] (00) (1F) SW ₇ -B	Measure V_{L20} (00) and V_{L20} (1F) when set the data of subaddress [0D] to (00) and (1F) respectively.
								$V_{LC20} = \pm [V_{L20} (1F) - V_{L20} (00)] / 2 (mV)$
								(1) Same as 12 above.
35	Center Curve Saw Positive Correction Maximum Amplitude	V _{CSF}	V _{p-p}	3.2	3.6	4.0	[08] adjustment, all SW-A [0E] (47)	(2) Measure the TP18 output amplitude when set the data of subaddress [0E] to (47).
			r r					VCSF TP18 waveform

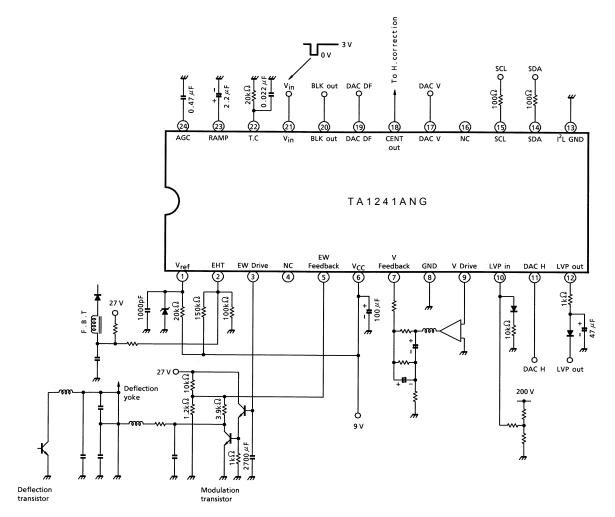
No	CHARACTERISTIC	SYMBOL	UNIT		ECTRIC		TEST METHOD (CONDIT	IONS V _{CC} = 9 V, Ta = 25±3°C)
No.	CHARACTERISTIC	SYMBOL	UNIT	MIN	LIMITS TYP.	MAX	BUS DATA AND SWITCHING MODE []; SUBADDRESS, (); DATA	TEST METHOD
36	Center Curve Saw Negative Correction Maximum Amplitude	V _{CSR}	V _{p-p}	3.2	3.6	4.0	[08] adjustment, all SW-A [0E] (40)	As above, measure the TP18 output amplitude when set the data of subaddress [0E] to (40).
37	Center Curve Parabola Positive Correction Maximum Amplitude	V _{CPF}	V _{p-p}	1.2	1.8	2.4	[08] adjustment, all SW-A [0E] (74)	 (1) Same as 12 above. (2) Measure the TP18 output amplitude when set the data of subaddress [0E] to (74).
38	Center Curve Parabola Negative Correction Maximum Amplitude	VCPR	V _{p-p}	1.2	1.8	2.4	[08] adjustment, all SW-A [0E] (04)	As above, measure the TP18 output amplitude when set the data of subaddress [0E] to (04).
39	Horizontal Centering Maximum Output Voltage	V _{H11}	V	4.8	5.0	5.2	[09] (40), all SW-A	Measure the TP11 voltage V_{H11} when set the data of subaddress [09] to (70).
40	Horizontal Centering Minimum Output Voltage	V _{L11}	V	0.5	1.3	2.1	All PRESET values, all SW-A	Measure the TP11 voltage V_{L11} when set the data of subaddress [09] to (00).
41	Vertical Centering Maximum Output Voltage	V _{H17}	V	4.8	5.0	5.2	[0B] (4F), all SW-A	Measure the TP17 voltage V_{H17} when set the data of subaddress [0B] to (7F).
42	Vertical Centering Minimum Output Voltage	V _{L17}	V	0.0	5.0	1.6	All PRESET values, all SW-A	Measure the TP17 voltage V_{L17} when set the data of subaddress [0B] to (00).
43	Dynamic Focus Correction Maximum Output Voltage	V _{H19}	V	4.8	5.0	5.2	[0F] (3F), all SW-A	Measure the TP19 voltage V_{H19} when set the data of subaddress [0F] to (3F).

					ECTRIC ACTERI		TEST METHOD (CONDIT	IONS V _{CC} = 9 V, Ta = 25±3°C)
No.	CHARACTERISTIC	SYMBOL	UNIT	MIN	LIMITS TYP.	MAX	BUS DATA AND SWITCHING MODE []; SUBADDRESS, (); DATA	TEST METHOD
44	Dynamic Focus Correction Minimum Output Voltage	V _{L19}	V	0.0	0.8	1.6	All PRESET values, all SW-A	Measure the TP19 voltage V_{L19} when set the data of subaddress [0F] to (00).
45	LVP Input Discrimination Voltage	V _{LVP}	V	5.5	5.8	6.1	All PRESET values, SW ₁₀ -B, READ-MODE	 (1) V_{DC} input : DC voltage = variable; Initial value = 9 V (2) Lower the V_{DC} input voltage and measure the TP10 voltage when the fifth bit from the LSB (in READ mode) changes from 0 to 1.
46	LVP Maximum Output Voltage	V _{H12}	V	4.8	5.0	5.2	All PRESET values, SW ₁₀ -B	 (1) V_{DC} input : DC voltage = 0 V (2) Measure the TP12 voltage.
47	LVP Minimum Output Voltage	V _{L12}	V	0.0	0.8	1.6	All PRESET values, SW ₁₀ -B	 (1) V_{DC} input : DC voltage = 9 V (2) Measure the TP12 voltage.
48	LVP Detection Output Current	I _{L20}	mA	0.43	0.65	0.87	All PRESET values, SW ₁₀ -B, SW ₇ -B	 (1) V_{DC} input : DC voltage = 4 V (2) Connect an ammeter between TP20 and GND and measure the current.
49	V-GUARD Discrimination Voltage	V _{GRD}	V	5.8	6.0	6.2	All PRESET values, SW7-B, READ-MODE	 (1) V_{DC} input : DC voltage = variable; Initial value = 4 V (2) Raise the V_{DC} input voltage and measure the TP7 voltage when the data of the fourth bit from the LSB (when in READ mode) changes from 0 to 1.
50	V-GUARD Detection Output Current	I _{G20}	mA	0.43	0.65	0.87	All PRESET values, SW ₇ -B	 (1) V_{DC} input : DC voltage = 7 V (2) Connect an ammeter between TP20 and GND and measure the current.
51	V _{ref} Vertical Amplitude Control Ratio	Vr	%	24	30	36	[03] (44) SW ₁ -B	(1) V _{DC} input : DC voltage = variable; Initial value = 6.2 V (2) Set the data of subaddress [03] to (42). (3) Measure the change in the TP7 amplitude when the DC voltage changes from 6.1 to 6.3V. $V_{\Gamma} = \frac{V(6.1) - V(6.3)}{0.2} \times 100(\%)$


No.		SYMBOL	UNIT	ELECTRICAL CHARACTERISTICS			TEST METHOD (CONDITIONS V_{CC} = 9 V, Ta = 25±3°C)		
NO.	CHARACTERISTIC	STWBOL		MIN	LIMITS TYP. MAX		BUS DATA AND SWITCHING MODE []; SUBADDRESS, (); DATA	TEST METHOD	
								(1) Turn the power on with no input to TP21.	
52	Self-Diagnosis Vertical Output	_	_	_	Check	_	All PRESET values, all SW-A,	(2) Check that in READ mode, the B_2 data = 0.	
							READ · MODE	(3) Check that when a trigger pulse is input to TP21, the B ₂ data = 1.	
53	Self-Diagnosis E / W Output			Ι	Check	_	All PRESET values, all SW-A, READ · MODE	Check the B_3 data in the same way as above.	
54	Power On Reset Read Detection	-		-	Check	_	All PRESET values, all SW-A, READ · MODE	_	
								(1) Input a trigger pulse to TP21.	
55	Blanking Switch Operation Check	_	_	_	Check	_	[0A] (20), all SW-A	(2) Measure TP22 when set the data of subaddress [0A] to (20). Check that TP22 outputs no signal.	

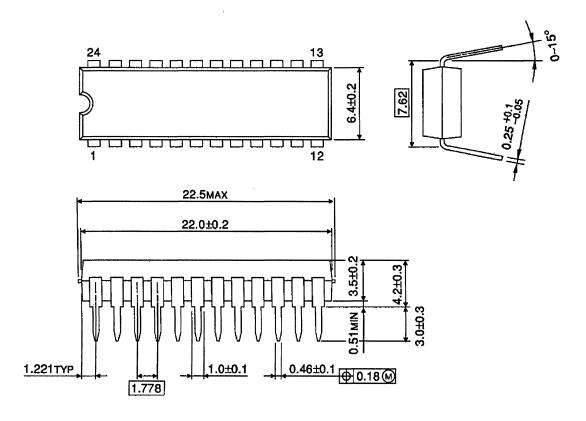
TA1241ANG


TOSHIBA


TEST CIRCUIT 1

DC characteristics

AC characteristics



TA1241ANG

PACKAGE DIMENSIONS

SDIP24-P-300-1.78

Unit : mm

Weight: 1.22g (Typ.)

About solderability, following conditions were confirmed

Solderability

- (1) Use of Sn-63Pb solder Bath
 - solder bath temperature = 230°C
 - dipping time = 5 seconds
 - \cdot the number of times = once
 - · use of R-type flux
- (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - solder bath temperature = 245°C
 - · dipping time = 5 seconds
 - \cdot the number of times = once
 - use of R-type flux

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.