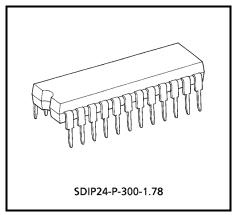
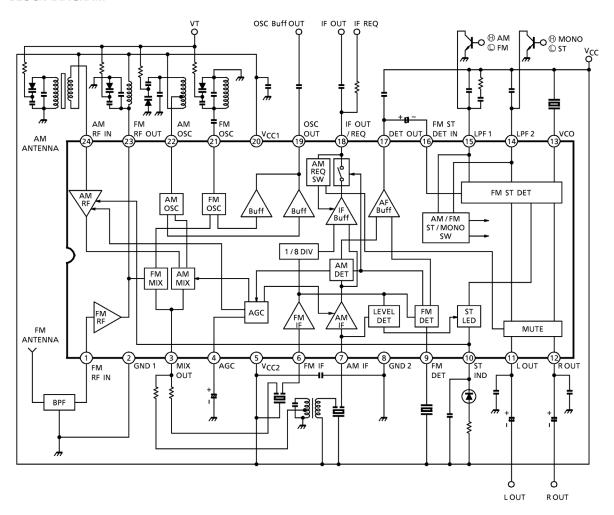
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic


TA2008ANG

5V AM / FM 1 Chip Tuner IC (for digital tuning system)

The TA2008ANG is the AM / FM 1 chip tuner IC, which is designed for radio cassette players and music centers. This is suitable for digital tuning system applications.


Features

- Suitable for combination with digital tuning system which is included IF counter.
- One terminal type AM / FM IF count output (auto stop signal) for IF counter of digital tuning system.
 - FM: 1.3375MHz (1 / 8 dividing)
 - AM: 450kHz
- Built-in mute circuit for IF count output.
- For adopting ceramic discriminator and ceramic resonator, it is not necessary to adjust the FM quad detector circuit and FM stereo detector vco circuit.
- Built-in one terminal type AM / FM local oscillator buffer output for digital tuning system applications.
- Operating supply voltage range: VCC = 3.5~14V (Ta = 25°C)

Weight: 1.2g (typ.)

BLOCK DIAGRAM

Explanation Of Terminals

Pin	Characteristic	Internal Circuit	DC Voltage (V) (at no signal)		
No.			AM	FM	
1	FM-RF in	FM-RF OUT 23 GND1 2	0	0.8	
2	GND1 (GND for RF stage)	_	0	0	
3	Mix out	VCC1 20 AM MIX FM MIX GND1 2 3	0.3	0.8	
4	AGC	V _{CC2} (5)	1.2	0.9	
5	V _{CC2} (V _{CC} for IF / FM ST DET stage)	_	5.0	5.0	
6		VCC2 (5) (3) (6) (8) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	5.0	5.0	

Pin	Characteristic	(at no	tage (V) signal)	
No.		Internal Circuit	AM	FM
7	AM IF in	VCC2 (5 G) (7 F) (1 F) (5.0	5.0
8	GND2 (GND for if / FM ST DET stage)	_	0	0
9	QUAD (FM QUAD. Detector)	V _{CC2} (5) (9) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	4.1	3.6
10	St ind • Stereo LED terminal • Offset voltage cancel for AM RF amp.	19kHz AM RF Amp	4.2	-
11 12	L-out (L-ch output) R-out (R-ch output)	11/12 GND2 8	1.35	1.35

4

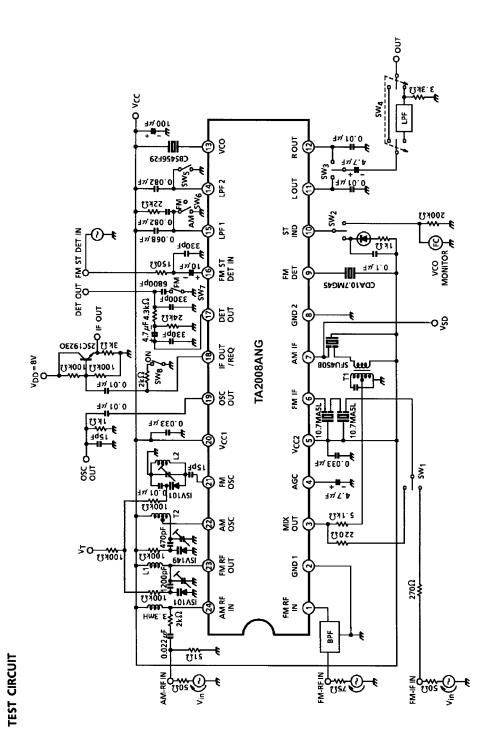
Pin No.	Characteristic	eristic Internal Circuit				
INO.			AM	signal) É		
13	VCO	V _{CC2} (5) (3) (3) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	5.0	4.1		
14	LPF2 • LPF terminal for synchronous detector. • VCO stop terminal V ₁₄ = GND → VCO stop	GND2 8	5.0	3.4		
15	LPF1 • LPF terminal for phase detector • Bias terminal for AM / FM SW circuit $V_{15} = \text{GND} \rightarrow \text{AM}$ $V_{15} = \text{open} \rightarrow \text{FM}$	GND2 8	0	2.8		
16	FM ST DET in	(16) W W W W W W W W W W W W W W W W W W W	1.4	1.4		

Pin No.	Characteristic	Internal Circuit	(at no	tage (V) signal)
INO.			AM	FM
17	DET out	VCC2 S AM OFFM FM 17 B LOW→FM, HIGH→AM B LOW→AM, HIGH→FM	1.4	1.4
18	IF out / REQ V_{18} = GND \rightarrow IF out	(E) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	4.0	4.0
19	OSC out	AM OSC 19 OSC GND1	4.0	4.0
20	V _{CC1} (V _{CC} for RF stage)		5.0	5.0
21	FM OSC	V _{CC1} 20 21 MIX - 11 GND1 2	5.0	5.0

Pin No.	Characteristic	Internal Circuit	DC Voltage (V) (at no signal)		
INO.			AM	FM	
22	AM OSC	② GND1	5.0	5.0	
23	FM RF out	cf. pin (1)	5.0	5.0	
24	AM RF in	VCC1 ② AGC AGC GND2 ②	5.0	5.0	

Maximum Ratings (Ta = 25°C)

Characteristic	Symbol	Rating	Unit
Supply voltage	V _{CC}	15	V
LED current	I _{LED}	10	mA
LED voltage	V_{LED}	15	V
Power dissipation	P _D *	1200	mW
Operating temperature	T _{opr}	<i>–</i> 25∼75	°C
Storage temperature	T _{stg}	-55~150	°C


 $^{^*}$: Derated above Ta = 25°C in the proportion of 9.6mW / °C

Electrical Characteristics

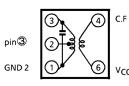
Unless Otherwise Specified, Ta = 25°C, V_{cc} = 5V, SW8: Off, F / E: f = 98MHz, f_m = 1kHz FM IF: f = 10.7MHz, Δf = ±22.5kHz, f_m = 1kHz ΔM : f = 1MHz, MOD = 30%, f_m = 1kHz FM ST DET: f_m = 1kHz

Characteristic		Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit	
Sunn	ly current	I _{CC (FM)}	FM) — V _{in} = 0, FM mode		ı	27	36	mA	
Оцрр	ny carrent	I _{CC} (AM)	1	V _{in} = 0. AM mode	-	18	25	IIIA	
./E	Input limiting voltage	V _{in} (lim)	_	–3dB limiting with respect to V _{OD} level at Vin = 60dBμV EMF	_	11	_	dBµV EMF	
ш	Local OSC buffer output voltage	V _{OSC} (buff) FM	1	f _{OSC} = 108.7MHz	90	180		mV _{rms}	
	Input limiting voltage	V _{in} (lim.) IF	ı	-3 dB limiting with respect to V_{OD} level at V_{in} = 80 dB μ V EMF	40	45	50	dBµV EMF	
	Recovered output voltage	output V _{OD} — V _{in} = 80dBμV EMF		50	75	100	mV _{rms}		
	Signal to noise ratio S / N — V _{in} = 80dBµV EMF		1	70	1	dB			
. .	Total harmonic distortion THD - V _{in} = 80dB _µ V EMF		V _{in} = 80dBμV EMF	l	0.3	l	%		
FM IF	AM rejection ratio	AMR	I	V _{in} = 80dBµV EMF	1	50	1	dB	
	SD output sensitivity	butput sensitivity V_{SD} — $V_{SD} = V_{CC} - 0.1V$		53	58	63	dBµV EMF		
	IF count output frequency	f1 / 8 IF (FM)		V _{in} = 80dBμV EMF, SW8: On	1.3373	1.3375	1.3377	MHz	
	IF count output voltage	V1 / 8 IF (FM)	ı	V _{in} = 80dBμV EMF,SW8: On	350	500	_	mV _{p-p}	
	IF count output sensitivity	IF sens (FM)		SW8: On	49	54	59	dBµV EMF	

Characteristic			Symbol	Test Cir– cuit	Test Condi	tion	Min.	Тур.	Max.	Unit
	Gain		G _V	_	V _{in} = 26dBµV EMF	V _{in} = 26dBµV EMF		45	80	mV_{rms}
	Recovered output voltage		V _{OD}	_	V _{in} = 60dBµV EMF	V _{in} = 60dBμV EMF		65	90	mV _{rms}
	Signal to nois	se ratio	S/N	1	V _{in} = 60dBµV EMF		1	42	-	dB
AM	Total harmor distortion	nic	THD	_	V _{in} = 60dBµV EMF		_	1.0	_	%
4	Local OSC b output voltag		V _{OSC} (buff) AM	_	f _{OSC} = 1.45MHz		90	150	_	mV _{rms}
	IF count outp voltage	out	V _{IF} (AM)	ı	V _{in} = 60dBµV EMF,	SW8: On,	350	500	ı	mV _{p-p}
	IF count outp sensitivity	out	IF sens (AM)	l	SW8: On		35	40	45	dBµV EMF
Pin (1	Pin (17) output recistance		R17		FM mode		I	0.75	1	kΩ
(1	Pin (17) output resistance		IXII		AM mode		ı	15.5	1	K22
	Input resistar	nce	R _{IN}	l			ı	24	-	kΩ
	Output resistance		R _{OUT}	I			1	5	ı	kΩ
	Max. Composite signal input voltage		V _{in max} (stereo)	_	L + R = 90%, P = 10%, SW4: LPF on f _m = 1kHz, THD = 3%		_	800	_	mV _{rms}
	Separation					f _m = 100Hz	_	42	_	dB
			Sep.	_		f _m = 1kHz	35	42	_	
						1	42	ı		
	Total harmonic	Monaural	THD (monaural)		V _{in} = 200mV _{rms}		I	0.1	l	%
FM St DET	distortion	Stereo	THD (stereo)		L + R = 180mV _{rms} , P = 20mV _{rms} , SW4: LPF on,		l	0.1	l	70
□ □	Voltage gain		G _V	1	V _{in} = 200mV _{rms}		-2	0	2	dB
	Channel bala	ince	C. B.	-	V _{in} = 200mV _{rms}		-2	0	2	dB
	Stereo LED	On	V _{L (ON)}		Pilot input		I	8	15	- mV _{rms}
	sensitivity	Off	V _{L (OFF)}		. not input		2	6	_	
	Stereo LED hysteresis		V _H		To LED turn off from turn on	LED	_	2	_	mV _{rms}
	Capture rang	ie	C. R.	_	P = 15mV _{rms}			±1.3	_	%
	Signal to nois	se ratio	S/N	_	V _{in} = 200mV _{rms}			80	_	dB
	Muting attenu	uation	MUTE	I	V _{in} = 200mV _{rms}		-	80	_	dB

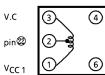
TA2008ANG-10

Coil Data


Cail Na	Test	L C _o		0		Tu	rns		Wire	Deference
Coil No.	Freq.	(µH)	(pF)	Q_0	1–2	2–3	1–3	3–6	(mmφ)	Reference
L1 FM RF	100MHz			100				$2\frac{1}{2}$	0.5 UEW	Within core
L1 FM OSC	100MHz			100				$2\frac{1}{2}$	0.5 UEW	Within core
T1 AM mix	455kHz		180	48↑	47	111	158	4–6 20	0.06 UEW	(T): A7LCS-12064N
T2 AM OSC	796kHz	268		125	15	89			0.06 UEW	(S): 2157–2239–213A (T): A7BRS–11998Y

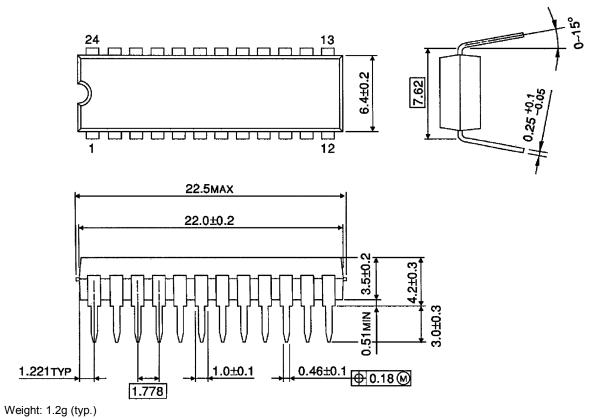
(S): Sumida electric co., Itd.

T2: AM OSC


(T): Toko co., Itd.

 $\begin{array}{c} \mathsf{L}_1 \ : \ \mathsf{FM} \ \mathsf{RF} \\ \mathsf{L}_2 \ : \ \mathsf{FM} \ \mathsf{OSC} \end{array}$

T1: AM MIX


pin 🕸

Package Dimensions

SDIP24-P-300-1.78

Unit: mm

About solderability, following conditions were confirmed

- Solderability
 - (1) Use of Sn-63Pb solder Bath
 - solder bath temperature = 230°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - · solder bath temperature = 245°C
 - dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

13