TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA2016FNG

1.5V Buffer Amplifier

The TA2016FNG is dual buffer amplifier IC, which is developed for 1.5V headphone stereo.

Features

- Output impedance can be changed by mode switch.
 - H mode 230Ω (typ.)
 - MID mode 750Ω (typ.)
 - OFF mode high impedance
- Built-in two switching transistors, which are synchronized with mode switch.
- Low quiescent current (V_{CC} = 1.2V, V_{in} = 0, Ta = 25°C) H mode $I_{CCQ1} = 2mA$ (typ.)
 - MID mode ICCQ2 = 1mA (typ.) OFF mode ICCQ3 = 0.8mA (typ.)
- Operating supply voltage range (Ta = 25°C) VCC (opr) = 0.95~2.2V

Weight: 0.04g (typ.)

Marking

Block Diagram

Operation Mode

Characteristic Mode SW	Impedance [Ω] (Typ.)	SW Tr
Н	230	OFF
MID	750	ON
OFF	High impedance	ON

Terminal Explanation Terminal Voltage: Typical Terminal Voltage with Test Circuit at no Signal. ($V_{CC} = 1.2V$, Ta = 25°C)

Terminal		Function	Internal Circuit	Terminal	
No.	Name	Function	Internal Circuit	Voltage (V)	
1	EQA	Equalizer switch MID / OFF mode: EQ ON		_	
10	EQB	H mode : EQ OFF			
2	INA	Input of buffer amplifier		0.75	
9	IN _B				
3	OUTA	Output of buffer amplifier		0.75	
8	8 OUT _B		-Қ Т		

Terminal		Function	Internal Circuit	Terminal		
No.	Name			Voltage (V)		
4	V _{REF}	Reference voltage		0.75		
5	GND	—	—	0		
6	V _{CC}			1.2		
7	Mode SW	Mode switch V _{CC} : H mode Open : MID mode GND : Off mode	VREEE UNE VREEE UNE VREE UNE VREEE U	_		

Application Note

(1) VREF

 $V_{\rm REF}$ circuit should be stabilized, because this IC operate on $V_{\rm REF}$ voltage.

(2) Input stage

The resistor between input terminal (pin(2), (9)) and VREF terminal (pin(4)) should be $33k\Omega$ or less. In case that this resistance is larger than $33k\Omega$, this IC doesn't operate normally.

Because, voltage drop at this resistor is increased and constant current source of input stage is saturated. (3) MODE SW

In case of MID mode, care should be taken to operate normally. There is a possibility that this IC doesn't operate normally, because switch condition is open.

Maximum Ratings (Ta = 25°C)

Characteristic	Symbol	Rating	Unit
Supply voltage	V _{CC}	3	V
Power dissipation	P _D (Note)	300	mW
Equalizer current	I _{EQ}	50	mA
Operating temperature	T _{opr}	-10~60	°C
Storage temperature	T _{stg}	-55~150	C

(Note) Derated above Ta = 25° C in proportion of 2.4mW / °C.

Electrical Characteristics Unless Otherwise Specified: V_{CC} = 1.2V, f = 1kHz, R_L = 4.7k Ω , Ta = 25°C

Characteristic	Symbol	Test Cir– cuit	Mode SW	Test Condition	Min.	Тур.	Max.	Unit
Quiescent supply current	I _{CCQ1}		н	V _{in} = 0	_	2	3	mA
	I _{CCQ2}		MID		_	1	1.6	
	I _{CCQ3}		OFF		_	0.8	1.4	
Voltage gain	G _{V1}		Н	V _{in} = -32dBV	-2.4	-0.4	1.6	dB
	G _{V2}		MID		-3.6	-1.6	0.4	
Maximum output voltage	V _{om1}		н	THD = 1%	70	120	_	mV _{rms}
	V _{om2}		MID		60	110	_	
Total harmonic distortion	THD1	-	н	V _o = 50mV _{rms}	_	0.1	0.6	%
	THD2		MID		_	0.2	0.8	
	V _{no1}		н	R _g = 600Ω	_	5	10	μV _{rms}
Output noise voltage	V _{no2}		MID		_	6	12	
Cross talk	CT1		н	V _{in} = -32dBV	—	76	—	dB
	CT2		MID		_	74	—	
H mode on current	I ₇	_	MID→H	I _{EQ} ≤ 300µA	5	_	—	μA
Off mode voltage	V ₇	_	MID→OFF	V _{in} = –32dBV ATT ≥ 45dB	0	_	0.12	V

Test Circuit

TOSHIBA

Characteristics Curves

Unless Otherwise Specified: V_{CC} = 1.2V, f = 1kHz, R_L = 4.7k Ω , Ta = 25°C

TOSHIBA

TOSHIBA

65

Package Dimensions

SSOP10-P-0.65

Unit : mm

Weight: 0.04g (typ.)

About solderability, following conditions were confirmed

Solderability

(1) Use of Sn-63Pb solder Bath

- solder bath temperature = 230°C
- · dipping time = 5 seconds
- \cdot the number of times = once
- · use of R-type flux
- (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - solder bath temperature = 245°C
 - dipping time = 5 seconds
 - $\cdot \,$ the number of times = once
 - use of R-type flux

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.