TA8122ANG, TA8122AFG, TA8123ANG, TA8123AFG

3V AV / FM 1Chip Tuner IC

TA8122ANG / AFG and TA8123ANG / AFG are the AM / FM 1chip tuner ICs, which are designed for portable radios and 3 V headphone radios.

Features

- Built-in

FM F / E, AM / FM IF and FM ST DET

- AM detector coil, FM IFT and IF coupling condenser are not needed.
- For adopting ceramic discriminator and ceramic resonator, it is not necessary to adjust the FM quad detector Circuit and FM ST DET VCO circuit.
- S curve characteristics of FM detection output in TA8122ANG / AFG and TA8123ANG / AFG are reverse to each other.

TA8122ANG / AFG: Reverse characteristic
TA8123ANG / AFG: Normal characteristic

- Compact pakage

TA8122ANG / 23ANG: Shrink DIP 24 pin (1.78mm pitch)
TA8122AFG / 23AFG: Mini flat package 24 pin

- Operating supply voltage range

$$
\mathrm{V}_{\mathrm{CC}}=1.8 \sim 7.0 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Weight
SDIP24-P-300-1.78: 1.2g (typ.)
SSOP24-P-300-1.00: 0.31g (typ.)

Block Diagram

(Note)
We recommend the kit of the ceramic filter and the ceramic resonator which are shown in the table as below.
It is necessary to meet the center frequency of the ceramic filter and the ceramic resonator, otherwise there are some cases that the characteristics get worse.

Kit Name	Combination			
	Ceramic Filter	Q'ty	Ceramic Resonator	Q'ty
KMFC403-Z	SFE10.7MA5-Z	2	CDA10.7MG16-Z	1
KMFC411-Z	SFE10.7MA5-Z	1	CDA10.7MG16-Z	1
KMFC422-Z	SFE10.7MA2-Z	2	CDA10.7MG16-Z	1
KMFC435-Z	SFE10.7MA5L-Z	2	CDA10.7MG16-Z	1
KMFC445-Z	SFE10.7MA5L-Z	1	CDA10.7MG16-Z	1

Manufacturer: MURATA MFG. CO., LTD

Explanation Of Terminals

Pin No.	Characteristic	Internal Circuit	DC Voltage (V) (AT No Signal)	
			AM	FM
1	FM-RF in		0	0.7
2	GND1 (GND for RF stage)	-	0	0
3	FM mix		2.3	1.8
4	AM mix		2.3	1.8
5	AGC (AM AGC)		0	0
6	$\mathrm{V}_{\mathrm{CC} 2}\left(\mathrm{~V}_{\mathrm{CC}}\right.$ for IF / MPX stage)	-	3.0	3.0

Pin No.	Characteristic	Internal Circuit	DC Voltage (V) (AT No Signal)	
			AM	FM
7	AM IF in		3.0	3.0
8	FM IF in		3.0	3.0
9	GND2 (GND for IF / MPX stage)	-	0	0
10	TUN LED (tuning LED)		-	-
11	ST LED (stereo LED)		-	-
12	QUAD (FM QUAD. Detector)		2.4	2.1

Pin No.	Characteristic	Internal Circuit	DC Voltage (V) (AT No Signal)	
			AM	FM
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	R-out (R-ch output) L-out (L-ch output)		1.0	1.0
15	VCO		2.5	2.5 (VCO stop mode)
16	LPF2 - LPF terminal for synchronous detector - Bias terminal for AM / FM SW circuit $\mathrm{V}_{16}=\mathrm{V}_{\mathrm{CC}} \rightarrow \mathrm{AM}$ $V_{16}=$ open $\rightarrow F M$		3.0	$\begin{gathered} 2.2 \\ \text { (VCO } \\ \text { stop } \\ \text { mode } \\ 2.7 \text {) } \end{gathered}$
17	LPF1 LPF terminal for phase detector VCO stop terminal $\mathrm{V}_{17}=\mathrm{V}_{\mathrm{CC}} \rightarrow \mathrm{VCO}$ stop		2.7	2.2
18	FM ST DET in		0.7	0.7

Pin No.	Characteristic	Internal Circuit	DC Voltage (V) (AT No Signal)	
			AM	FM
19	DET out		1.5	1.2
20	AM OSC		3.0	3.0
21	FM OSC		3.0	3.0
22	$\mathrm{V}_{\text {CC1 }}$ ($\mathrm{V}_{\text {cc }}$ for RF stage)	-	3.0	3.0
23	FM RF out	cf. Pin(1)	3.0	3.0
24	AM RF in		3.0	3.0

Maximum Ratings ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Characteristic		Symbol	Rating	Unit
Supply voltage		V_{CC}	8	V
LED current		ILED	10	mA
LED voltage		VLED	8	V
Power dissipation	TA8122ANG / 23ANG	$P_{D} \quad$ (Note)	1200	mW
	TA8122AFG / 23AFG		400	
Operating temperature		Topr	-25~75	${ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55~150	${ }^{\circ} \mathrm{C}$

Note: Derated above $25^{\circ} \mathrm{C}$ in the proportion of $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TA8122ANG / 23ANG and of $3.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TA8122AFG / 23AFG

Electrical Characteristics

Unless Otherwise Specified,
$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}, \mathrm{~F} / \mathrm{E}: \mathrm{f}=83 \mathrm{MHz}, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$
FM IF: $\mathrm{f}=\mathbf{1 0 . 7} \mathrm{MHz}, \Delta \mathrm{f}= \pm \mathbf{2 2 . 5 k H z}, \mathrm{f}_{\mathrm{m}}=\mathbf{1 k H z}$
$A M: f=1 \mathrm{MHz}, M O D=30 \%, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$
FM ST DET: $\mathrm{f}_{\mathrm{m}}=\mathbf{1 k H z}$

Characteristic		Symbol	Test Circuit	Test Condition	Min.	Typ.	Max.	Unit
Supply current		ICC (FM)	1	$\mathrm{V}_{\text {in }}=0, \mathrm{FM}$ mode	-	14.0	18.5	mA
		ICC (AM)	1	$\mathrm{V}_{\text {in }}=0, \mathrm{AM}$ mode	-	6.0	8.3	
$\underset{\text { ш }}{\text { ш }}$	Input limiting voltage	$\mathrm{V}_{\text {in (lim.) }}$	1	-3 dB limiting	-	14.0	-	$\mathrm{dB} \mu \mathrm{V}$ EMF
	Local OSC voltage	Vosc	2	$\mathrm{f}_{\text {OSC }}=72.3 \mathrm{MHz}$	70	105	140	mV rms
	Input limiting voltage	$\begin{aligned} & \mathrm{V}_{\text {in (lim. }} \\ & \text { IF } \end{aligned}$	1	-3dB limiting	39	44	49	$\mathrm{dB} \mu \mathrm{~V}$ EMF
$\sum_{i} \subseteq$	Recovered output voltage	$\mathrm{V}_{\text {OD }}$	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}$	55	80	110	mV rms
	Signal to noise ratio	S / N	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	70	-	dB
	Total harmonic distortion	THD	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}$	-	0.4	-	\%
	AM rejection ratio	AMR	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	50	-	dB
	LED on sensitivity	V_{L}	1	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$	43	48	53	$\mathrm{dB} \mu \mathrm{~V}$ EMF
$\sum_{<}$	Gain	GV	1	$\mathrm{V}_{\text {in }}=23 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}$	20	40	80	mV rms
	Recovered output voltage	V_{OD}	1	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	50	60	100	mV rms
	Signal to noise ratio	S / N	1	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	44	-	dB
	Total harmonic destortion	THD	1	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	1.0	-	\%
	LED on sensitivity	V_{L}	1	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$	19	24	29	$\mathrm{dB} \mu \mathrm{V}$ EMF
Pin(19) output resistance		R_{19}	1	FM mode	-	0.75	-	$\mathrm{k} \Omega$
		AM mode		-	12.5	-		

Characteristic			Symbol	Test Circuit	Test Condition		Min.	Typ.	Max.	Unit	
	Input resistance		R_{IN}	-		-	-	24	-		
	Output resistance		ROUT	-		-	-	5	-		
	Max. Composite signal input voltage		$\begin{aligned} & \mathrm{V}_{\text {in (MAX.) }} \\ & \text { STEREO } \end{aligned}$	1	$\begin{aligned} & L+R=90 \%, P=10 \% \\ & f_{m}=1 \mathrm{kHz}, T H D=3 \% \end{aligned}$		-	350	-	mV rms	
	Separation		Sep.	1	$\begin{aligned} & L+R= \\ & 135 \mathrm{mV}_{\text {rms }} \\ & P=15 \mathrm{mV}_{\mathrm{rms}} \end{aligned}$	$\mathrm{fm}_{\mathrm{m}}=100 \mathrm{~Hz}$	-	42	-	dB	
			$\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$			35	42	-			
			$\mathrm{f}_{\mathrm{m}}=10 \mathrm{kHz}$			-	42				
	Total harmonic distortion	Monaural		THD (MONAURAL)	1	$\mathrm{V}_{\text {in }}=150 \mathrm{mV} \mathrm{V}_{\text {rms }}$		-	0.2	-	\%
		Stereo		$\begin{gathered} \text { THD } \\ \text { (STEREO) } \end{gathered}$		$\begin{aligned} & L+R=135 m V_{r m s}, \\ & P=15 m V_{r m s} \end{aligned}$		-	0.2	-	
	Voltage gain		$\mathrm{G}_{\mathrm{V}}(\mathrm{FM}$ ST DET)	1	$\mathrm{V}_{\text {in }}=150 \mathrm{~m} \mathrm{~V}_{\text {rms }}$		-5	-3	-1	dB	
	Channel balance		C.B.	1	$\mathrm{V}_{\text {in }}=150 \mathrm{~m} \mathrm{~V}_{\text {rms }}$		-2	0	2		
	Stereo LED sensitivity	On	$\mathrm{V}_{\mathrm{L}}(\mathrm{ON})$	1	Pilot input		-	8	15	mV rms	
		Off	V_{L} (OFF)				2	6	-		
	Stereo LED hysteresis		V_{H}	1	To LED turn off from LED turn on		-	2	-	mV rms	
	Capture range		C.R.	1	$\mathrm{P}=15 \mathrm{mV} \mathrm{rms}$		-	1.3	-	\%	
	Signal to noise ratio		S / N	1	$\mathrm{V}_{\text {in }}=150 \mathrm{mV} \mathrm{rms}$		-	70	-	dB	

Test Circuit 1

Test Circuit 2

Coil Data

Coil No.	Test Freq.	L $(\mu \mathrm{H})$	C_{0} (pF)	Q_{0}	Turns						Wire $(\mathrm{mm} \phi)$
L_{1} FM RF	100 MHz	-	-	100	-	-	-	$2 \frac{1}{2}$	-	0.5 UEW	(S) 53T-037-202
L_{2} FM OSC	100 MHz	-	-	100	-	-	$2 \frac{3}{4}$	-	-	0.5 UEW	(S) 0258-244
T_{1} AM OSC	796 kHz	288	-	115	13	73	-	-	-	0.08 UEW	(S) 4147-1356-038
T_{2} AM IFT	455 kHz	-	180	120	-	-	180	-	15	0.08 UEW	(S) 2150-2162-165

(S): SUMIDA ELECTRIC CO., LED.
L_{1} : FM RF

L_{2} : FM OSC

$\mathrm{T}_{2}: \mathrm{AM}$ IFT

FM Detection Circuit

For the FM detection circuit, detection coil is able to use instead of ceramic discriminator.
Recommended circuit and recommended coil are as follows.
In this case, please take care that Vin (lim.) falls a little.

Test Frequency	C_{o} (pF)	Q_{o}	Turns				Wire $(\mathrm{mm} \phi)$	REF
10.7 MHz	100		-	-	12	-	0.12 UEW	

$F M(F / E+I F)$

FM (IF)

FM (IF)

FM (IF)

FM (IF)

AM

FM ST DET

FM ST DET

FM ST DET

FM ST DET

FM ST DET

Package Dimensions

Weight: 1.2g (typ.)

Package Dimensions

SSOP24-P-300-1.00

Unit : mm

Weight: 0.31 g (typ.)

About solderability, following conditions were confirmed

- Solderability
(1) Use of $\mathrm{Sn}-63 \mathrm{~Pb}$ solder Bath
- solder bath temperature $=230^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder Bath
- solder bath temperature $=245^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

