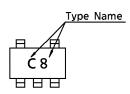
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC4S30F

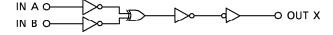
EXCLUSIVE-OR GATE

TC4S30F contains one circuit of exclusive OR gate. Since the buffers of two stage inverters are provided for all the outputs, the input/output voltage characteristic has been improved and the noise immunity has been also improved. And increase of transmission time due to load capacity increase is kept minimum.

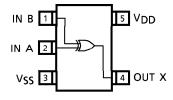
Wide variety of applications are offerred, such as digital comparators and parity circuits.


SSOP5-P-0.95

Weight: 0.016g (Typ.)


MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	Vss - 0.5~Vss + 20	V
Input Voltage	v _{IN}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	>
Output Voltage	Vout	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	>
DC Input Current	ΙΝ	± 10	mΑ
Power Dissipation	PD	200	mW
Operating Temperature Range	T _{opr}	- 40∼85	°C
Storage Temperature Range	T _{stg}	- 65~150	°C
Lead Temperature (10s)	TL	260	°C


MARKING

LOGIC DIAGRAM

PIN ASSIGNMENT (TOP VIEW)

TRUTH TABLE

INF	OUTPUT	
Α	В	Х
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

961001EBA2

[■] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

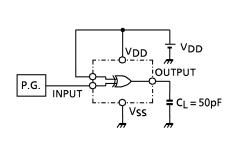
RECOMMENDED OPERATING CONDITIONS $(V_{SS} = 0V)$

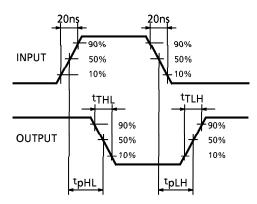
CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V_{DD}	_	3	_	18	V
Input Voltage	V _{IN}		0	_	V_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS $(V_{SS} = 0V)$

CHARACTERISTIC SYM-		TEST CONDITION	V _{DD} − 40°C		0°C	25°C			85°C		UNIT
CHARACTERISTIC	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High-Level		_{OUT} <1μΑ	5	4.95	_	4.95	5.00	_	4.95	_	
Output Voltage	۷он	$V_{IN} = V_{SS}, V_{DD}$	10	9.95		9.95	10.00	—	9.95	_	
Output Voltage		VIN - 422, ADD	15	14.95	_	14.95	15.00	_	14.95	_	V
Low-Level		 l _{OUT} <1μΑ	5	_	0.05	_	0.00	l	 	0.05	Ū
Output Voltage	VOL	$V_{IN} = V_{SS}$, V_{DD}	10	_	0.05	_	0.00	l	—	0.05	
- Catput Voltage			15	_	0.05	_	0.00	0.05		0.05	
		V _{OH} = 4.6V	5	- 0.61		- 0.51	- 1.0	l	- 0.42		
Output High		$V_{OH} = 2.5V$	5	- 2.5		- 2.1	- 4.0	l	– 1.7		
Current	IOH	V _{OH} = 9.5V	10	- 1.5		- 1.3	- 2.2	ı	- 1.1		
Carrent		V _{OH} = 13.5V	15	- 4.0	_	- 3.4	- 9.0	—	- 2.8	_	
		$V_{IN} = V_{SS}, V_{DD}$									mΑ
		$V_{OL} = 0.4V$	5	0.61		0.51	1.2	l	0.42		ША
Output Low	lOL	V _{OL} = 0.5V	10	1.5		1.3	3.2	i	1.1	t	
Current	'OL	V _{OL} = 1.5V	15	4.0	_	3.4	12.0	—	2.8	_	
		$V_{IN} = V_{SS}$, V_{DD}									
		V _{OUT} = 0.5V, 4.5V	5	3.5	_	3.5	2.75	_	3.5		
Input High Voltage	\ \ \ \	V _{OUT} = 1.0V, 9.0V	10	7.0	_	7.0	5.5	_	7.0	_	
Imput High Voltage	VIH	V _{OUT} = 1.5V, 13.5V	15	11.0	_	11.0	8.25	—	11.0	_	
		l _{OUT} <1μΑ									v
		V _{OUT} = 0.5V, 4.5V	5	_	1.5	_	2.25	1.5	_	1.5	
Input Law Valtage	.,	V _{OUT} = 1.0V, 9.0V	10	_	3.0	_	4.5	3.0	 	3.0	
Input Low Voltage	V_{IL}	V _{OUT} = 1.5V, 13.5V	15	_	4.0	_	6.75	4.0	_	4.0	
		l _{OUT} <1μΑ									
Input H Level	ΊΗ	V _{IH} = 18V	18	_	0.1	_	10 ⁻⁵	ı	_	1.0	
Current L Level	IJL	V _{IL} = 0V	18	_	- 0.1	_	- 10 ^{- 5}	-0.1	—	- 1.0	μΑ
Quiescent			5	_	1	_	0.001	l		7.5	
Device Current	IDD	$V_{IN} = V_{SS}$, V_{DD}	10	_	2	—	0.002	l	—	15	μ A
Device Carrent			15	_	4	_	0.002	4	_	30	

961001EBA2'


The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.


DYNAMIC ELECTRICAL CHARACTERISTICS (Ta = 25°C, V_{SS} = 0V, C_L = 50pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time	,		5	_	70 25	200	
(Low to High)	t _{TLH}	_	10	_	35	100	
(Low to High)			15	_	30	80	
Output Transition Time (High to Low)	tTHL		5	_	70	200	ns
		_	10	_	35	100	
			15	_	30	80	
	4		5		90	280	
Propagation Delay Time	t _{pLH} t _{pHL}	_	10	_	45	130	ns
			15		35	100	
Input Capacitance	CIN	_		_	5	7.5	pF

CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

CIRCUIT WAVEFORM

