Preliminary TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA1322FN

Down-Converter IC with PLL for Satellite Tuner

The TA1322FN is a wideband down-converter which can operate at input frequency ranging from 850 MHz to 2200 MHz . Intended primarily for use in satellite tuners, this IC includes an oscillator, a mixer, an IF amplifier and a PLL.

The $I^{2} \mathrm{C}$ bus data format is used as the data control format.
The supply voltage of 5.0 V helps minimize the tuner's power dissipation, while the compact 30-pin SSOP package allows the tuner to be kept small.

Features

- Supply voltage: 5.0 V (typ.)
- Wide input frequency range
- Low phase noise oscillator

Weight: 0.17 g (typ.)

- Standard $\mathrm{I}^{2} \mathrm{C}$ bus format control
- 4-MHz (X'tal) buffer output pin
- Reference oscillator input change-over switch [X'tal or external input]
- 33-V high-voltage tuning amplifier built-in
- Built-in comparator (P4, P5, P7)
- Bandswitch drive transistor (PO) [IBD = 40 mA (max)]
- Selected IF output port
- Frequency step: 62.5 kHz or 125 kHz (for $4-\mathrm{MHz} \mathrm{X'tal)}$
- 4-address setting via address selector
- Power-on reset circuit
- x1/2 prescaler
- Flat compact package: SSOP30-P-300-0.65 (0.65-mm pitch)

Power-On Reset Operation Conditions

- Frequency step: 125 kHz
- Charge pump output current: $\pm 50 \mu \mathrm{~A}$
- Counter data: all [0]
- Band driver: OFF
- Tuning amplifier: OFF
- IF output operation: pin 19 is ON

Note 1: This device can easily be damaged by high voltages or electrical fields. For this reason, please handle it with care

Block Diagram

Pin Functions

\begin{tabular}{|c|c|c|c|}
\hline Pin No. \& Pin Name \& Function \& Interface \\
\hline 1 \& GND1 \& Ground pin for oscillator circuit block \& - \\
\hline 2 \& \(\mathrm{V}_{\mathrm{CC}} 1\) \& Power supply pin for local oscillator circuit block \& \multirow[t]{2}{*}{} \\
\hline \[
\begin{aligned}
\& 3 \\
\& 4
\end{aligned}
\] \& Oscillator \& Local oscillator circuit \& \\
\hline 5 \& GND2 \& Ground pin for oscillator circuit block \& - \\
\hline \begin{tabular}{c}
6 \\
\\
\hline 7
\end{tabular} \& Vt Output

NF \& Tuning voltage output pin with built-in tuning amplifier \&

\hline 8 \& | Reference Input |
| :--- |
| (4-MHz input) | \& | Crystal oscillator input |
| :--- |
| Can be switched between X'tal oscillator and external input using pin 24 (XO switch). | \&

\hline 9 \& $\mathrm{V}_{\mathrm{cc}} 2$ \& Power supply pin for PLL circuit block \& -

\hline 10 \& Reference signal buffer output \& Buffer output pin for reference signal \&

\hline 11 \& GND3 \& Ground pin for PLL circuit block \& -

\hline
\end{tabular}

Pin No.	Pin Name	Function	Interface
12	P4	Output can be controlled by setting the band switch data. The circuit configuration is open collector output. Each pin has a built-in comparator. The status of the comparator can be checked READ mode.	
13	P5		
14	P7		
15	SCL Input	Input pin for $I^{2} \mathrm{C}$ bus serial clock data	
16	SDA Input/Output	Input/output pin for $I^{2} \mathrm{C}$ bus serial clock data	
17	PO output	Output can be controlled by setting band switch data.	
18	ADR Set	The address for hardware bit setting can be selected by applying voltage to this pin. 4 programmable address can be programmed.	

\begin{tabular}{|c|c|c|c|}
\hline Pin No. \& Pin Name \& Function \& Interface

\hline 19

21 \& IF Output 1

IF Output 2 \& | IF output pin. |
| :--- |
| Output can be controlled by setting the band switch data (P6). |
| IF output impedance is 75Ω each other. |
| When P6 data set 0, output pin is Pin 19 (IF output 1). |
| When P6 data set 1, output pin is Pin 21 (IF output 2). | \&

\hline 20 \& GND4 \& Ground pin for IF amplifier circuit block \& -

\hline 22 \& $\mathrm{V}_{\mathrm{cc}}{ }^{3}$ \& Power supply pin for IF amplifier circuit block \& -

\hline 23 \& GND5 \& Ground pin for IF amplifier circuit block \& -

\hline 24 \& XO Switch \& | Determines reference signal input. |
| :--- |
| If connected to ground: |
| X'tal oscillator. |
| If open or connected to $\mathrm{V}_{\mathrm{CC}} 2$: external input | \&

\hline 25 \& TEST \& | When test mode set, this pin can confirm X'tal divider signal and 1/2 counter signal. |
| :--- |
| This pin can be used at open. | \&

\hline 26 \& GND6 \& Ground pin for mixer circuit block \& -

\hline 27
28 \& RF Input1 \& RF signal input pin Input can be either balanced or unbalanced. \&

\hline 29 \& GND7 \& Ground pin for mixer circuit block \& -

\hline 30 \& $\mathrm{V}_{\mathrm{cc}} 4$ \& Power supply pin for mixer circuit block \& -

\hline
\end{tabular}

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Pin No.	Symbol	Rating	Unit
Supply voltage	2	$\mathrm{~V}_{\mathrm{CC} 1}$		
	9	$\mathrm{~V}_{\mathrm{CC}} 2$	6	V
	22	$\mathrm{~V}_{\mathrm{CC}} 3$	6	
	30	$\mathrm{~V}_{\mathrm{CC}} 4$	6	V
Tuning amplifier voltage	6	VBT	38	mW
Power dissipation	-	P_{D}	1130	$($ Note 2$)$

Note 2:50 mm $\times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}, 40 \% \mathrm{Cu}$ board If $\mathrm{Ta}>25^{\circ} \mathrm{C}$, derate this value by $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Recommended Operating Conditions

Pin No.	Symbol		Min	Typ.	Max	Unit
2	Local oscillator block	$\mathrm{V}_{\mathrm{Cc}} 1$	4.5	5.0	5.5	V
9	PLL block	$\mathrm{V}_{\mathrm{Cc}} 2$	4.5	5.0	5.5	V
22	IF amplifier block	$\mathrm{V}_{\mathrm{Cc}} 3$	4.5	5.0	5.5	V
30	Mixer block	$\mathrm{V}_{\mathrm{Cc}} 4$	4.5	5.0	5.5	V

Electrical Characteristics

DC Characteristics (unless otherwise specified, $\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V}_{\mathrm{Cc}}{ }^{2}=\mathrm{V}_{\mathrm{Cc}} 3=\mathrm{V}_{\mathrm{CC}} 4=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)
When power on, counter data $=$ all [0], VBT $=\mathrm{OFF}, \mathrm{CPO}=0$, band $=$ all [0], and IF output operate Pin 19.

Parameter	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Power supply current	Icc1	1	-	5.0	7.5	9.5	mA
	ICC^{2}		-	21.5	26.5	32.0	
	Icc3		-	19.5	24.0	29.0	
	$\mathrm{I}_{\mathrm{CC}} 4$		-	10.0	12.5	15.5	
Total	Icc-total	-	-	56.0	70.0	86.0	mA

Down-Converter Block

AC Characteristics (unless otherwise specified, $\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V}_{\mathrm{cc}}{ }^{2}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 4=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter		Symbol	Test Circuit	Test Condition (Note 4, Note 5)	Min	Typ.	Max	Unit
RF input frequency		Mfin	-	-	850	-	2200	MHz
RF input level		MPin	-	-	-	-	-35	dBmW
IF output frequency		Afin	-	-	350	-	550	MHz
IF output impedance	(Note 3)	AZout	-	Single-end	-	75	-	Ω
Local oscillator frequency		LO	-	-	1300	-	2700	MHz
Conversion gain	(Note 3)	CG	3	$\mathrm{fRF}=898 \mathrm{MHz}$	27.5	30.5	33.5	dB
				fRF $=1598 \mathrm{MHz}$	27	31	34	
				fRF $=2198 \mathrm{MHz}$	24.5	29	32	
Noise figure	(Note 3)	NF	4	$\mathrm{fRF}=898 \mathrm{MHz}$	-	9	10.5	dB
				$\mathrm{fRF}=1598 \mathrm{MHz}$	-	9	11.5	
				$\mathrm{fRF}=2198 \mathrm{MHz}$	-	11	13	
IF output power level	(Note 3)	Apsat	3	$\mathrm{fRF}=898 \mathrm{MHz}$	6	8	-	dBmW
				fRF $=1598 \mathrm{MHz}$	6	8	-	
				fRF $=2198 \mathrm{MHz}$	6	8	-	
$3^{\text {rd }}$ inter modulation (IF output intercept point)	(Note 3)	IP3	5	$\mathrm{fd}=898 \mathrm{MHz}$, fud $=903 \mathrm{MHz}$	13	15	-	dBmW
				$\begin{aligned} & \mathrm{fd}=1598 \mathrm{MHz}, \\ & \text { fud }=1603 \mathrm{MHz} \end{aligned}$	14	16	-	
				$\begin{aligned} & \mathrm{fd}=2198 \mathrm{MHz}, \\ & \text { fud }=2203 \mathrm{MHz} \end{aligned}$	14	16	-	
Conversion gain shift	(Note 3)	CGs	3	$\mathrm{fRF}=898 \mathrm{MHz}$	-	-	± 2	dB
				$\mathrm{fRF}=1598 \mathrm{MHz}$	-	-	± 2	
				fRF $=2198 \mathrm{MHz}$	-	-	± 2	
Frequency shift (PLL OFF)		$\Delta \mathrm{fB}$	3	fosc $=1300 \mathrm{MHz}$	-	-	± 5.5	MHz
				fosc $=2000 \mathrm{MHz}$	-	-	± 3.5	
				fosc $=2600 \mathrm{MHz}$	-	-	± 3.5	
Phase noise (with 10-kHz offset)		PN	3	fosc $=1300 \mathrm{MHz}$	-	-74	-70	$\begin{gathered} \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$
				fosc $=2000 \mathrm{MHz}$	-	-75	-71	
				fosc $=2600 \mathrm{MHz}$	-	-74	-70	
RF pin LO leak level		LORF	3	fosc $=1300 \mathrm{MHz}$	-	-36	-33	dBmW
				fosc $=2000 \mathrm{MHz}$	-	-31.5	-28	
				fosc $=2600 \mathrm{MHz}$	-	-33	-30	
IF pin LO leak level		LOIF	3	fosc $=1300 \mathrm{MHz}$	-	-21.5	-15.5	dBmW
				fosc $=2000 \mathrm{MHz}$	-	-31	-25	
				fosc $=2600 \mathrm{MHz}$	-	-36	-30.5	
IF switch isolation		IFiso	3	$\mathrm{fRF}=898 \mathrm{MHz}$	30	36	-	dB
				fRF $=1598 \mathrm{MHz}$	30	36	-	
				$\mathrm{fRF}=2198 \mathrm{MHz}$	30	36	-	

Note 3: IF output frequency $=402 \mathrm{MHz}$
Note 4: IF output load $=75 \Omega$
Note 5: IF output operate Pin 21

PLL Block (unless otherwise specified, $\mathrm{V}_{\mathrm{cc}} \mathbf{1}=\mathrm{V}_{\mathrm{cc}} \mathbf{2}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 4=5 \mathrm{~V}, \mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Tuning amplifier output voltage (close)	Vt out	1	$\mathrm{VBT}=33 \mathrm{~V}, \mathrm{RL}=33 \mathrm{k} \Omega$	0.3	-	33	V
Tuning amplifier maximum current	Ivt	1	$\mathrm{VBT}=33 \mathrm{~V}$	-	-	3	mA
X'tal negative resistance	XtR	1	XO-SW:GND (X'tal oscillator mode) [NDK (AT-51), 4 MHz used]	1	2.5	-	k Ω
X'tal operating frequency	OSCin	1		3.2	-	4.5	MHz
X'tal external input level	Xo extl	1	XO-SW: $\mathrm{V}_{\mathrm{Cc}} 2$ or open	100	-	1000	$m V_{p-p}$
X'tal external input frequency	X-ext	1		2	-	6	MHz
Ratio setting range	N	-	15-bit counter	1024	-	32767	
Logic input low voltage	$\mathrm{V}_{\text {IL }}$	1	SDA and SCL pins	-0.3	-	1.5	V
Logic input high voltage	V_{IH}	1		3	-	$\begin{aligned} & V_{C C}{ }^{2} \\ & +0.3 \end{aligned}$	V
Logic input current (low)	I BsL	1	SDA and SCL pins	-20	-	10	$\mu \mathrm{A}$
Logic input current (high)	1 BsH	1		-10	-	20	$\mu \mathrm{A}$
ACK output voltage	VACK	1	ISINK $=3 \mathrm{~mA}$	-	-	0.4	V
Charge pump output current	Ichg	1	$\mathrm{CP}=[0]$	± 35	± 50	± 75	$\mu \mathrm{A}$
			$\mathrm{CP}=[1]$	± 180	± 240	± 345	
Band driver drive current	IBD	1	P0	-	-	40	mA
Band driver voltage drop	VBDsat	1	PO : IBD $=40-\mathrm{mA}$ drive	-	0.2	0.4	V
Comparator pin input voltage	VCMP	1	IP4, IP5, IP7	0	-	6	V
Comparator pin low voltage	VLCMP	1	IP4, IP5, IP7	0	-	1.5	V
Comparator pin high voltage	VHCMP	1	IP4, IP5, IP7	2.7	-	6	V
Output port flow current	IPin	2	P4, P5, P7	-	-	7	mA
Output port saturation voltage	Vpinsat	2	P4, P5, P7 ($\mathrm{Ipin}=7 \mathrm{~mA}$)	-	0.1	0.15	V
Output port leakage current	Iplk	1	P4, P5, P7 (Vport = 6 V)	-	-	10	$\mu \mathrm{A}$
Output port maximum voltage	Vport	1	P4, P5, P7	-	-	6	V
Xo buffer output level	Xo out	1	1-k $\Omega, 10-\mathrm{pF}$ load X'tal: NDK (AT-51), 4 MHz used. $4-\mathrm{MHz}$ level monitored on oscilloscope using FET probe ($1 \mathrm{M} \Omega, 1.9 \mathrm{pF}$).	350	500	-	$m V_{p-p}$

Bus Line Characteristics

Parameter	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
SCL clock frequency	fSCL	-	Please refer to data timing chart.	0	-	100	kHz
Bus free time between a STOP and START conditions	$t_{\text {buF }}$			4.7	-	-	$\mu \mathrm{S}$
Hold time for repeated START condition	$\mathrm{t}_{\mathrm{HD}} ;$ STA			4	-	-	$\mu \mathrm{S}$
SCL clock low period	tLow			4.7	-	-	$\mu \mathrm{s}$
SCL clock high period	$\mathrm{t}_{\mathrm{HIGH}}$			4	-	-	$\mu \mathrm{s}$
Set-up time for repeated START condition	fsu; STA			4.7	-	-	$\mu \mathrm{s}$
Data hold time	$\mathrm{t}_{\mathrm{HD}} ;$ DAT			0	-	-	$\mu \mathrm{s}$
Data set-up time	tsu; DAT			250	-	-	ns
Rise time for SDA and SCL signals	tR			-	-	1000	ns
Fall time for SDA and SCL signals	tF			-	-	300	ns
Set-up time for STOP condition	tsU; STO			4	-	-	$\mu \mathrm{s}$

SCL

Figure $1 \quad I^{2} \mathrm{C}$ Bus Data Timing Chart (rising-edge timing)

Test Conditions

(1) Conversion gain

RF input level $=-40 \mathrm{dBmW}$
(2) Noise figure

NF meter direct-reading value (DSB measurement)
(3) IF output power level

M easure maximum IF output level.
(4) 3rd inter modulation

- fd (fd input level $=-40 \mathrm{dBmW}$) \quad fud $=\mathrm{fd}+5 \mathrm{MHz}$ (fud input level $=-40 \mathrm{dBmW}$)

Calculate IF output intercept point as follows:
$\mathrm{IP} 3=\mathrm{S} /(\mathrm{N}-1)+\mathrm{P}[\mathrm{dBmW}]$
S: suppression level N: 3 P:IF output level
(5) Conversion gain shift

Conversion gain shift is defined as change in conversion gain when supply voltage exceeds ranges $\mathrm{V} \mathrm{CC}=5 \mathrm{~V}$ to 4.5 V or $\mathrm{VCC}=5 \mathrm{~V}$ to 5.5 V .
(6) Frequency shift (PLL OFF)

Frequency shift is defined as change in oscillator frequency when supply voltage exceeds ranges $\mathrm{Vccl}=5 \mathrm{~V}$ to 4.5 V or $\mathrm{Vcc1}=5 \mathrm{~V}$ to 5.5 V .
(7) \quad Phase noise (offset $=10 \mathrm{kHz}$)

M easure phase noise at $10-\mathrm{kHz}$ offset.
(8) RF pin local-leak level

Measure worst-case local-leak level for RF pin (with IF output pin open).
(9) IF pin local-leak level

Measure worst-case local-leak level for IF pin (with RF input pins shorted using $50-\Omega$ resistor, and not measure IF output pin open).
(10) IF switch isolation RF input level $=-40 \mathrm{dBmW}$ M easure selected IF output pin's level, and not selected IF output pin's level. Ifiso =| (selected IF output pin's level) - (not selected IF output pin's level)| Not selected IF output pin shorts using 50Ω resistor.

PLL Block

$-I^{2} \mathrm{C}$ Bus Communications Control--

The TA1322FN conforms to Standard ModeI ${ }^{2} \mathrm{C}$ bus format.
$1^{2} \mathrm{C}$ Bus Mode allows two-way bus communication using Write Mode (for receiving data) and Read Mode (for processing status data).

Write M ode or Read M ode can be selected by setting the least significant bit (R/W bit) of the address byte.
If the least significant address bit is set to 0 , Write M ode is selected; if it is set to 1 , Read M ode is selected.
Address can be set using the hardware bits. 4 programmable address can be programmed.
Using this setting, multiple frequency synthesizers can be used on the same $I^{2} \mathrm{C}$ bus line.
The address for the hardware bit setting can be selected by applying voltage to the address setting pin (ADR-pin
18). The address is selected according to the setting of these bits.

During acknowledgment of receipt of a valid address byte, the serial data (SDA) line is Low.
If Write Mode is currently selected, when the data byte is programmed, the serial data (SDA) line will be Low during the next acknowledgment.
A) Write mode (setting command)

When Write M ode is selected, byte 1 holds address data; byte 2 and byte 3 hold frequency data; byte 4 holds the divider ratio setting and function setting data; and byte 5 holds output port data.
Data is latched and transferred at the end of byte 3 , byte 4 and byte 5 .
Byte 2 and byte 3 are latched and transferred as a byte pair.
Once a valid address has been received and acknowledged, the data type can be determined by reading the first bit of the next byte. That is, if the first bit is 0 , the data is frequency data; if it is 1 , the data is function-setting or band output data.
Additional data can be input without the need to transmit the address data again until the ${ }^{2} \mathrm{C}$ bus STOP condition is detected (e.g. a frequency sweep using additional frequency data is possible).

If a data transmission is aborted, data programmed before the abort remains valid.
[[BYTE 1]]
The address data for byte 1 can be set using the hardware bit.
The hardware bit can be set by applying a voltage to the address-setting pin (ADR: pin 18).
[[BYTE 2, BYTE 3]]
Byte 2, byte 3 control the 15 -bit programmable counter ratio and are stored in the 15 -bit shift register together with frequency setting counter data.
The program frequency can be calculated using the following formula:

$$
\begin{array}{ll}
\text { fosc }=2 \times \mathrm{fr} \times \mathrm{N} & \\
& \text { fosc: Program frequency } \\
& \text { fr: Phase comparator reference frequency } \\
& \mathrm{N}: \text { Counter total divider ratio }
\end{array}
$$

fr is calculated from the crystal oscillator frequency and the reference frequency divider ratio set in byte 4 (the control byte).
($\mathrm{fr}=\mathrm{X}$ 'tal oscillator frequency/reference divider ratio)
The reference frequency divider ratio can be set to $1 / 64$ or $1 / 128$.
When a $4-\mathrm{MHz}$ crystal oscillator is used, $\mathrm{fr}=62.5 \mathrm{kHz}$ or 31.25 kHz . The respective step frequencies are 125 kHz and 62.5 kHz .

[[BYTE 4]]

Byte 4 is a control byte used to set function. Bit 2 (CP) controls the output current of the charge-pump circuit.
When bit 2 is set to [0], the output current is set to $\pm 50 \mu \mathrm{~A}$; when set to [1], $\pm 240 \mu \mathrm{~A}$.
Bit 3 (T1) is used to set the test mode. When bit 3 is set to [0], normal mode; when set to [1], test mode.
Bit 4 (T0) is used to set the charge pump. When bit 4 is set to [0], charge pump is ON (normal used); When set to [1], charge pump is OFF.

Bit 5 (TS2) and bit 6 (TS1) used to set the test mode. They are used to set the charge pump test, phase comparator reference signal output, and $1 / 2$ counter divider ratios.
Bit 7 (TSO) is used to set the X 'tal reference frequency divider ratio. When bit 7 is set to [0], 1/128 (frequency step is 62.5 kHz); when set to [1], $1 / 64$ (frequency step is 125 kHz).

Bit $8(\mathrm{OS})$ is used to set the charge pump drive amplifier output setting. When bit 8 is set to [0],
the output is ON (normal mode); when set to [1], the output is OFF.
[[BYTE 5]]
Byte 5 can be used to set control the output port.
Bit 1 (P7), bit 3 (P5) and bit 4 (P4) are used to control output port P7, P5 and P4.
Bit 2 (P6) is used to control change IF output port. When bit 2 is set to [0], IF output 1 (pin 19)
is ON; when set to [1], IF output 1 (pin 21) is ON.
Bit $8(\mathrm{PO})$ is used to control band output port (PO). When bit 8 is set to [0], P0 is OFF; when set to [1], PO is ON. (P0) output port can be driven at less than 40 mA .
B) READ mode (status request)

When READ mode is set, power-on reset operation status, phase comparator lock detector output status, comparator input voltage status are output to the master device.
Bit 1 (POR) indicates the power-on reset operation status. When the power supply of VCC2 stops, bit is set to [1]. The condition for reset to [0], voltage supplied to $\mathrm{V}_{\mathrm{Cc}} 2$ is 3 V or higher, transmission is requested in READ mode, and the status is output. (when VCC2 is turned on, bit 1 is also set to [1].)
Bit 2 (FL) indicates the phase comparator lock status. When locked, [1] is output; when unlocked, [0] is output.
Bit 3 (IP7), bit 4 (IP5) and bit 5 (IP4) indicate the input comparator status. High level status is output [1], low level status is output is [0]. When voltage applied from 0 V to 1.5 V , output is [0]. When from 2.7 V to 6 V , output is [1].

Data Format

A) Write mode

		MSB							LSB	
1	Address Byte	1	1	0	0	0	MA1	MA0	R/W $=0$	ACK
2	Divider Byte 1	0	N14	N13	N12	N11	N10	N9	N8	ACK
3	Divider Byte 2	N7	N6	N5	N4	N3	N2	N1	N0	ACK (L)
4	Control Byte	1	CP	T1	T0	TS2	TS1	TS0	OS	ACK (L)
5	Band SW Byte	P7	P6	P5	P4	\times	\times	\times	P0	ACK (L)

x : Don't care
ACK: Acknowledged
(L): Latch and transfer timing
B) Read mode

		MSB							LSB	
1	Address Byte	1	1	0	0	0	MA1	MA0	R/W =1	ACK
2	Status Byte	POR	FL	IP7	IP5	IP4	1	1	1	-

ACK: Acknowledged

Data Specifications

- MA1 and MA0: programmable hardware address bits

MA1	MAO	Voltage Applied to Address Pin
0	0	0 to $0.1 \mathrm{~V}_{\mathrm{CC}} 2$
0	1	OPEN or 0 to $\mathrm{V}_{\mathrm{CC}} 2$
1	0	$0.4 \mathrm{~V}_{\mathrm{CC}} 2$ to $0.6 \mathrm{~V}_{\mathrm{CC}} 2$
1	1	$0.9 \mathrm{~V}_{\mathrm{CC}} 2$ to $\mathrm{V}_{\mathrm{CC}} 2$

- N14-N0: programmable counter data
- CP: charge pump output current setting
[0]: $\pm 50 \mu \mathrm{~A}$ (typ.)
[1]: $\pm 240 \mu \mathrm{~A}$ (typ.)
- T1: test mode setting
[0]: normal mode
[1]: test mode
- T0: charge pump setting
[0]: charge pump is ON (normal mode)
[1]: charge pump is OF F
- TS0: X'tal reference frequency divider ratio select bits.

TS0	Divider ratio	Step frequency	fr
0	$1 / 128$	62.5 kHz	31.25 kHz
1	$1 / 64$	125 kHz	62.5 kHz

- T1, TS2, TS1, TS0: test mode

Characteristics	T1	TS2	TS1	TS0	Divider ratio	Notes	
Normal operation	0	\times	\times	0	$1 / 128$	-	
Normal operation	0	\times	\times	1	$1 / 64$	-	
Charge pump	Sink	1	1	0	0	$1 / 128$	
Source	1	1	0	1	$1 / 64$		

x: DON'T CARE
Note 5 : When test mode, $\mathrm{OS}=0$ (tuning ON) is necessary.
When testing the counter divider output, programmable counter data input is necessary.

- OS: tuning amplifier control setting
[0]: Tuning amplifier ON (normal operation)
[1]: Tuning amplifier OFF
- P4, P5, P7: output port
[0]: OFF
[1]: ON
- P6: IF output port switchover

P6	Output Port
0	IF output $1(\operatorname{pin} 19)$ is ON
1	IF output $2(\operatorname{pin} 21)$ is ON

- PO: band output
[0]: OFF
[1]: ON
This can be driven at less than 40 mA .
- POR: power-on reset flag
[0]: normal operation
[1]: reset operation
- FL: lock detect flag
[0]: Unlocked
[1]: Locked
- IP4, IP5, IP7: comparator output
[0]: supply voltage is from 0 V to 1.5 V
[1]: supply voltage is from 2.7 V to 6 V
- XO-SW: reference signal input changeover

Pin 24	Input Method
GND	X'tal
V $_{\mathrm{Cc}} 2$ or open	External input

Test Circuit 1

DC Characteristics

X'tal: NDK (AT-51), 4 MHz

Test Circuit 2

DC Characteristics
Measurement for "Output port flow current" and "Output port saturation voltage".

Test Circuit 3

AC Characteristics

Test Circuit 4

Measuring Noise Figure

Test Circuit 5

Measuring $3^{\text {rd }}$ Inter Modulation

$1^{2} \mathrm{C}$-Bus Control Summary

The bus control format of TA1322FN conforms to the Philips I ${ }^{2}$ C-bus control format.

Data Transmission Format

S	S	Slave address	0	A		SUB address	A	Data	A	P
	\uparrow	7 bits			\uparrow	8 bits		8 bits		
MSB					MSB	MSB				
						S: Start condition				
						P: Stop condition				
						A: Acknowledge				

(1) Start/stop condition

(2) Bit transfer

(3) Acknowledge

(4) Slave address

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	0	0	$*$	$*$	0

Purchase of TOSHIBA ${ }^{2} \mathrm{C}$ components conveys a license under the Philips ${ }^{2} \mathrm{C}$ Patent Tights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Handling Precautions

1. The device should not be inserted into or removed from the test jig while a voltage is being applied to it: otherwise the device may be degraded or break down.
Also, do not abruptly increase or decrease the power supply to the device (see figure 1).
Overshoot or chattering in the power supply may cause the IC to be degraded.
To avoid this, filters should be placed on the power supply line.

Figure 1
2. The peripheral circuits described in this datasheet are given only as system examples for evaluating the device's performance. TOSHIBA intend neither to recommend the configuration or related values of the peripheral circuits nor to manufacture such application systems in large quantities.
Please note that the high-frequency characteristics of the device may vary depending on the external components, the mounting method and other factors relating to the application design. Therefore, the evaluation of the characteristics of application circuits is the responsibility of the designer.
TOSHIBA only guarantee the quality and characteristics of the device as described in this datasheet and do not assume any responsibility for the customer's application design.
3. In order to better understand the quality and reliability of TOSHIBA semiconductor products and to incorporate them into designs in an appropriate manner, please refer to the latest Semiconductor Reliability Handbook (integrated circuits) published by TOSHIBA Semiconductor Company.
This handbook can also be viewed on-line at the following URL:
http://www.semicon.toshiba.co.jp/noseek/us/sinrai/sinraifm.htm.

Package Dimensions

Weight: 0.17 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

