TA2149BN,TA2149BFN

3 V AM/FM 1 Chip Tuner IC (for Digital Tuning System)

TA2149BN, TA2149BFN are AM/FM 1 chip tuner ICs, which are designed for portable Radios and 3 V Head phone Radios.

This is suitable for Digital Tuning System Applications. FM Local Oscillation Voltage is set up low relativity, for NEW FCC.

Functions

- For NEW FCC.
- Suitable for combination with Digital Tuning System which is induded IF Counter.
- Adjustable for IF count output sensitivity by external resistance of pin 17 (FM only).
- One terminal type AM/FM IF count output for IF counter of Digital Tuning System.
- FM: 1.3375 MHz (1/8 dividing)
- AM: 450 kHz
- Built-in Mute Circuit for IF count output.
- For adopting ceramic Discriminator, it is not necessary to adjust the FM Quad Detector Circuit.
- Built-in FM MPX VCO circuit.
- Built-in one terminal type AM/FM Local Oscillator Buffer Output for Digital Tuning System Applications.
- Built-in 1/16 Pre-scaler for FM Local OSC Buffer.

Weight
SDIP24-P-300-1.78: 1.2 g (Typ.)
SSOP24-P-300-0.65A: 0.14 g (Typ.)

- Built-in AM Low cut circuit.
- Low supply current. ($\mathrm{V} \mathrm{CC}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

$$
\begin{aligned}
\operatorname{ICCq}(F M) & =13 \mathrm{~mA}(\text { Typ. }) \\
\operatorname{ICCq}(A M) & =8.5 \mathrm{~mA}(\text { Typ. })
\end{aligned}
$$

- Operating Supply voltage range: $\mathrm{VCC}=1.8 \sim 7 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Note 1: Handle with care to prevent devices from deteriorations by static electricity.

Block Diagram

Explanation of Terminals

(Terminal Voltage: Typical terminal voltage at no signal with test circuit, $\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

PIN No.	Characteristic	Internal Circuit	Terminal Voltage (Typ.) (V)	
			AM	FM
1	RF GND (GND for FM RF stage)	-	0	0
2	FM-RFin		0	0.8
3	AM LOW CUT		1.0	-
4	MIX OUT		3.0	3.0
5	$V_{C C}$ (V_{CC} for AM, FM IF, MPX)	-	3.0	3.0
6	AM IF IN		2.3	2.5

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	Characteristic	Internal Circuit	Terminal Voltage (Typ.) (V)	
			AM	FM
7	FM IF IN		3.0	3.0
8	GND (GND for AM, FM IF, MPX)	-	0	0
9	AGC		0	0
10	QUAD		2.5	2.2
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	R-OUT L-OUT		1.2	1.2

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	Characteristic	Internal Circuit	Terminal Voltage (Typ.) (V)	
			AM	FM
13	LPF2 - LPF terminal for phase detector - Bias terminal AM/FM SW circuit $\mathrm{V}_{13}=\mathrm{GND} \rightarrow \mathrm{AM}$ $\mathrm{V}_{13}=\mathrm{OPEN} \rightarrow \mathrm{FM}$		0	2.2
14	LPF1 - LPF terminal for synchronous detector - VCO stop terminal $\mathrm{V}_{14}=\mathrm{GND} \rightarrow \mathrm{VCO}$ STOP		0.7	2.4
15	MPX IN		0.7	0.7
16	DET OUT	(a) LOW $\rightarrow \mathrm{FM}, \mathrm{HIGH} \rightarrow \mathrm{AM}$ (b) LOW $\rightarrow \mathrm{AM}, \mathrm{HIGH} \rightarrow \mathrm{FM}$	1.0	0.9

| PIN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. |
| Characteristic | IF REQ

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	Characteristic	Internal Circuit	Terminal Voltage (Typ.) (V)	
			AM	FM
22	AM RFin		3.0	3.0
23	$\begin{array}{\|l\|l} \mathrm{RF} \mathrm{~V}_{\mathrm{CC}} \\ \left(\mathrm{~V}_{\mathrm{CC}} \text { for } \mathrm{FM}\right. \\ \text { RF stage }) \end{array}$	-	3.0	3.0
24	FM RFout	cf. pin 1	3.0	3.0

Application Note

1. AM Low-Cut Circuit

- TheAM Low-Cut action is carried out by the bypass of the high frequency component of the positive-feedback signal at the AF AMP stage. The external capacitor: C3 by-pass this component.
- The cut-off frequency fL is determined by the internal resistance $22 \mathrm{k} \Omega$ (Typ.) and the external capacitor C 3 as following;

$$
\mathrm{f}_{\mathrm{L}}=\frac{1}{2 \times \pi \times 22 \times 10^{3} \times \mathrm{C}_{3}}(\mathrm{~Hz})
$$

- In the case of the AM Low-Cut function is not needed, set up the value of C3 over $1 \mu \mathrm{~F}$. In the condition of $\mathrm{C}_{3} \geqq 1 \mu \mathrm{~F}$, the frequency characteristic has flat response at the low frequency.
- It is possible to reduce the recovered output level at AM mode, by additional resistance between the pin 3 and GND line.

2. FM Detection Circuit

For the FM detection circuit, detection coil is able to use instead of ceramic discriminator.
Recommended circuit and recommended coil are as follows. (In this case, please take care that Vin (lim.) falls a little.)

Test Frequency	Co (pF)	Qo	Turns				Wire $(\mathrm{mm} \phi)$	Reference
		$1-2$	$2-3$	$1-3$	$4-6$			
10.7 MHz		45	-	-	30	-	0.08 UEW	Toko Co., Ltd. 600BEAS-10018Z

3. FM/AM switch and forced monaural switch.

- FM/AM switchover and stereo/forced monaural switchover are done by pin 13 and pin 14.
- FM/AM switch (pin 13)

V13: Low (Active Low, Vth $=0.2 \mathrm{~V}$ (Typ.), Ith $30 \mu \mathrm{~A}$ (Typ.) $\rightarrow \mathrm{AM}$
V13: OPEN \rightarrow FM

- Stereo/forced monaural switch (pin 14)

V14: Low (Active Low, Vth $=0.2 \mathrm{~V}$ (Typ.), Ith $30 \mu \mathrm{~A}$ (Typ.) \rightarrow F orced Monaural
V14: OPEN
\rightarrow Stereo

4. Vcc Line

This ICs have two voltage supply terminals, VCC (for AM, FM IF, MPX stage) and RF Vcc (for FM RF stage). Set up the potential difference between VCC and RF VCC 0.4 V (typ.) or less, otherwise there is the case that this IC doesn't operate normally.
5. How to control the Divider of FM OSC.

Divider of FM OSC ON/OFF switching is controlled by external pull-up resistor of pin 19.
In case of Divider of FM OSC is used, it is necessary to set up the value of R under 470Ω (typ.).
When R is over 470Ω, it is feared that Divider is not operating. (At this time, buffer output frequency is equal to FM OSC frequency.)
Which ever Divider of FM OSC is used or not, AM OSC buffer frequency and output level is same.

Mode	SW8	Output Frequency	Output Level (Typ.)
	OPEN	$1 / 1 \mathrm{FM}$ OSC	35 mVrms
	ON	$1 / 16$ FM OSC	110 mVrms
AM	OPNE	$1 / 1 \mathrm{FM} \mathrm{OSC}$	75 mVrms
	ON		

6. How to adjust the IF Count Output Sensitivity

IF count output sensitivity can be adjusted by changing the value of external resistance at pin 17.
This ICs have IF signal level detector in pin 9 . When DC voltage of pin 9 is high than threshold, IF count output signal come out from the pin 17.
And this threshold is controlled by value of external resistance at pin 19.

Maximum Ratings $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Characteristics		Symbol	Rating	Unit
Supply voltage		V_{CC}	8	V
LED current		ILED	10	mA
LED voltage		VLED	8	V
Power dissipation	TA2149BN	$\begin{aligned} & \mathrm{PD}_{\mathrm{D}} \\ & \text { (Note 2) } \end{aligned}$	1200	mW
	TA2149BFN		500	
Operating temperature		Topr	-25~75	${ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55~150	${ }^{\circ} \mathrm{C}$

Note 2: Derated above $\mathrm{Ta}=25^{\circ} \mathrm{C}$ in the proportion of $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TA 2149 BN of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TA2149BFN.
Electrical Characteristics (Unless otherwise specified, $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathbf{3 V}$,
F/E: $\mathrm{f}=\mathbf{9 8} \mathrm{MHz}, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$
FM IF: $\mathrm{f}=\mathbf{1 0 . 7} \mathbf{~ M H z}, \Delta \mathrm{f}= \pm \mathbf{7 5} \mathrm{kHz}, \mathrm{f}_{\mathrm{m}}=\mathbf{1} \mathrm{kHz}$
AM: $\mathrm{f}=1 \mathrm{MHz}, \mathrm{MOD}=30 \%, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$
MPX: $\mathrm{f}_{\mathrm{m}}=\mathbf{1} \mathrm{kHz}$)

Characteristic		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Supply current		ICC (FM)	-	$V_{\text {in }}=0, F M$ mode	-	13	16.5	mA
		ICC (AM)	-	$\mathrm{V}_{\text {in }}=0$, AM mode	-	8.5	11.0	
F/E	Input limiting voltage	$\mathrm{V}_{\text {in }}(\mathrm{lim})$	-	$\begin{aligned} & \mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V} \text { EMF, } \\ & -3 \mathrm{~dB} \text { limiting } \end{aligned}$	-	10	-	$\mathrm{dB} \mu \mathrm{V}$ EMF
	Local OSC buffer output voltage 1	VOSC (buff) FM1	-	$\mathrm{fOSC}=108.7 \mathrm{MHz}$	23	35	-	mVrms
	Local OSC buffer output voltage 2	Vosc (buff) FM2	-	$\begin{aligned} & \text { fosc }=6.79375 \mathrm{MHz} \\ & \text { SW8: ON } \end{aligned}$	75	110	-	mVrms
FM IF	Input limiting voltage	$\mathrm{V}_{\text {in }}(\mathrm{lim}) \mathrm{IF}$	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF, -3dB limiting	37	42	47	dB $\mu \mathrm{V}$ EMF
	Recovered output voltage	V_{OD}	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF	200	250	300	mV rms
	Signal to noise ratio	S/N	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	75	-	dB
	Total harmonic distortion	THD	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	0.3	-	\%
	AM rejection ration	AMR	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	60	-	dB
	IF count output frequency	f_{IF} (FM)	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF, SW7: ON	1.3373	1.3375	1.3377	MHz
	IF count output voltage	V_{IF} (FM)	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF, SW7: ON	250	290	330	$m V_{p-p}$
	IF count output sensitivity	IF sens (FM)	-	SW7: ON	42	47	52	$\mathrm{dB} \mu \mathrm{V}$ EMF
AM	Gain	GV	-	$\mathrm{V}_{\text {in }}=27 \mathrm{~dB} \mu \mathrm{~V}$ EMF	20	38	70	mVrms
	Recovered output voltage	V_{OD}	-	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	60	85	108	mV rms
	Signal to noise ratio	S/N	-	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	41	-	dB
	Total harmonic distortion	THD	-	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	0.7	-	\%
	Local OSC buffer output voltage	Vosc (buff) AM	-	$\mathrm{fOSC}=1.45 \mathrm{MHz}$	55	75	-	mVrms
	IF count output voltage	VIF (AM)	-	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF, SW7: ON	250	290	350	$m V_{p-p}$
	IF count output sensitivity	IF sens (AM)	-	SW7: ON	33	38	43	$\mathrm{dB} \mu \mathrm{V}$ EMF
Pin 17 output resistance		R_{17}	-	FM mode	-	0.75	-	$\mathrm{k} \Omega$
		-	AM mode	-	15.5	-		

Characteristic			Symbol	Test Circuit	Test Condition		Min	Typ.	Max	Unit	
MPX	Input resistance		$\mathrm{R}_{\text {IN }}$	-	-		-	55	-	$\mathrm{k} \Omega$	
	Output resistance		ROUT	-	-		-	5	-	$k \Omega$	
	Max. composite signal input voltage		$V_{\text {in MAX }}$ (Stereo)	-	$\begin{aligned} & L+R=90 \%, P=10 \%, \\ & S W 3: L P F ~ O N \\ & f_{m}=1 \mathrm{kHz}, \mathrm{THD}=3 \% \end{aligned}$		-	700	-	mVrms	
	Separation		Sep.		$L+R=$ 180 mVrms , $\mathrm{P}=20 \mathrm{mVrms}$ SW3: LPF ON	$\mathrm{f}_{\mathrm{m}}=100 \mathrm{~Hz}$	-	45	-	dB	
			-	$\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$		35	45	-			
				$\mathrm{f}_{\mathrm{m}}=10 \mathrm{kHz}$		-	45	-			
	Total harmonic distortion	Monaural		THD (Monaural)	-	$\mathrm{V}_{\mathrm{in}}=200 \mathrm{mVrms}$		-	0.3	-	\%
		Stereo		THD (Stereo)	-	$\mathrm{L}+\mathrm{R}=180 \mathrm{mVrms}$, P = 20 mVrms , SW3: LPF ON		-	0.3	-	
	Voltage gain		GV	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}$		-2.7	-1.2	0.2	dB	
	Channel balance		C.B.	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}$		-1.5	0	1.5	dB	
	Stereo LED sensitivity	ON	V_{L} (ON)	-	Pilot input (19 kHz)		-	10	14	mVrms	
		OFF	V_{L} (OFF)	-			5	8	-		
	Stereo LED hysteresis		V_{H}	-	To LED turn off from LED turn on		-	2	-	mVrms	
	Capture range		C.R.	-	$\mathrm{P}=15 \mathrm{mVrms}$		-	± 8	-	\%	
	Signal noise ratio		S/N	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}$		-	80	-	dB	
Muting attenuation			MUTE	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}$		-	80	-	dB	

Coil Data

Coil No.	Test Freq.	$\begin{gathered} \mathrm{L} \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{Co} \\ (\mathrm{pF}) \end{gathered}$	Qo	Turns					Wire (mm ϕ)	Reference
					1-2	2-3	1-3	1-4	4-6		
L 1 FM RF	100 MHz	-	-	79	-	-	$2 \frac{1}{2}$	-	-	0.16UEW	Toko Co., Ltd. 666SNF-305NK
L_{2} FM OSC	100 MHz	-	-	76	-	-	2	-	-	0.16UEW	Toko Co., Ltd. 666SNF-306NK
T ${ }_{1}$ AM OSC	796 kH z	268	-	65	19	95	-	-	-	0.05UEW	Toko Co., Ltd. 5PNR-5146Y
T2 AM IFT	455 kH z	-	470	60	-	-	109	-	7	0.05UEW	Toko Co., Ltd. 5PLG-5147X

L_{1} : FM RF

L_{2} : FM OSC
(1) ${ }^{3}$
T_{1} : AM OSC

T_{2} : AM IFT

Test Circuit

Package Dimensions

Unit : mm

Weight: 1.2 g (typ.)

Package Dimensions

Weight: 0.14 g (typ.)

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

