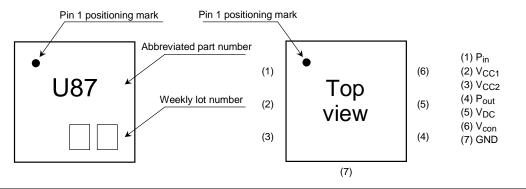

TOSHIBA RF Power Amplifier Module

S-AU87

Power Amplifier Module for Japan IS-95 and CDMA2000 1X

Features

•	High output power:	P _o = 27.5dBmW (min) @IS-95 mddulation
•	Low operating current:	ICC = 395 mA (typ.)
		$@P_0 = 27.5 dBmW$, $VCC = 3.5$ V,
		IS-95 modulation
		ICC = 130 mA (typ.)
		$@P_0 = 17.0dBmW VCC = 1.3 V$
		IS-95 modulation
٠	Low idle current:	I_{CC} (idle) = 55 mA (typ.)
		@VCC = $3.5 \text{ V}, \text{ VDC} = \text{V}_{con} = 2.8 \text{ V}$
•	Low leakage current:	ICC (leak) = $10 \ \mu A \ (max)$
		$@V_{CC} = 3.5 \text{ V}, \text{ V}_{DC} = 2.8 \text{ V}, \text{ V}_{con} = 0 \text{ V}$
•	Low-voltage operation:	Operation at $V_{CC} = 1.3$ V is possible.
		$@P_0 = 17.0dBmW$, IS-95 modulation
•	Compact package:	$4.0 \text{ mm} \times 4.0 \text{ mm} \times 1.2 \text{ mm}$ (typ.)



Weight: 0.055 g (typ.)

Maximum Ratings (Ta = 25°C)

Characteristics Symbol Test Conditio		Test Condition	Rating	Unit
Supply voltage 1	V _{CC1}	$Po < 27.5 dBm, \ V_{con} = V_{DC} = 2.80 \ V$	6	V
Supply voltage 2	V _{CC2}	$Po < 27.5 dBm, \ V_{con} = V_{DC} = 2.80 \ V$	6	V
Bias circuit voltage	V _{DC}	$V_{CC1} = V_{CC2} = V_{con} = 0 V, P_i = None$	6	V
Control voltage	V _{con}	$V_{CC1} = V_{CC2} = V_{DC} = 0 \text{ V}, \text{ P}_i = \text{None}$	4	V
Collector current	Icc		1	А
Input power	Pi		7	dBmW
Power dissipation	PD	Tc = 25°C	1	W
Operating temperature	T _{op}		-20 to +85	°C
Storage temperature range	T _{stg}		-30 to +125	°C

Marking and Pin Assignment

Electrical Characteristics 1 (1X modulation (Note 4), f = 887-925 MHz, Tc = 25° C, Z_g = Z_l = 50Ω)

Characteristics	Symbol	Test Condition		Тур.	Max	Unit
Collector idle current (Note 1)	I _{CC} (idle)	V _{CC1} = V _{CC2} = 3.5 V,		55	70	mA
Bias circuit current	circuit current I _{DC} (idle)		_	0.5	2.0	mA
Control current	I _{con} (idle)	P _i = no input	_	2.5	4.0	mA
	I _{CC} (leak)	$V_{CC1} = V_{CC2} = 3.5 V,$	_	1.0	10	μΑ
Leakage current (Note 1)	I _{DC} (leak)	$V_{DC} = 2.8 V$, $V_{con} = 0 V$ $P_i = no input$	_	1.0	10	μΑ
Output power 1	P _{o1}	$V_{CC1} = V_{CC2} = 3.5 \text{ V},$ $V_{DC} = V_{con} = 2.8 \text{ V}$ $P_i = \text{adjust}$	27.0	27.5		dBmW
Power gain 1	G _{p1}		25.0	27.0	_	dB
Collector current 1 (Note 1)	I _{CC1}		_	355	395	mA
Bias circuit current 1	I _{DC1}		_	2.5	4.0	mA
Control current 1	I _{con1}	$V_{CC1} = V_{CC2} = 3.5 V,$	_	3.5	5.0	mA
Input VSWR 1	VSWRin1	$V_{DC} = V_{con} = 2.8 V$ $P_{o} = 27.0 dBmW$	_	2.0	3.5	_
Receiving band noise 1	NRB1			-139	-137	dBmW /Hz
2nd harmonics 1	2fo1			-35	-30	dBc
3rd harmonics 1	3fo1			-45	-40	dBc
Out-of-band noise 1	N-3MHz1	fo = 888 MHz	_	-45	-40	dBmW /30kHz
Adjacent-channel leakage power ratio 1	ACPR1	$\Delta f = \pm 900 \text{ kHz}$ (Note 2)	_	-49	-46	dBc
Adjacent-channel leakage power ratio 2	ACPR2	$\Delta f = \pm 1.98 \text{ MHz}$ (Note 2)	_	-60	-55	dBc
Adjacent-channel leakage power ratio 3	ACPR3	$\Delta f = \pm 900 \text{ kHz}$ (Note 2) $V_{CC1} = V_{CC2} = 3.3 \text{ V},$	_	-50	-46	dBc
Adjacent-channel leakage power ratio 4	ACPR4	$ \Delta f = \pm 1.98 \text{ MHz} \\ \text{(Note 2)} \\ (N$		-61	-56	dBc
Power gain 2	G _{p2}		22.0	25.0	28.0	dB
Collector current 2 (Note 1)	I _{CC2}	$V_{CC1} = V_{CC2} = 1.3 V,$	_	105	130	mA
Bias circuit current 2	I _{DC2}	$V_{DC} = V_{con} = 2.8 V,$ $P_o = 15.0 dBmW$		0.8	2.5	mA
Control current 2	I _{con2}		_	2.5	4.0	mA
Adjacent-channel leakage power ratio 5	ACPR5	$\Delta f = \pm 900 \text{ kHz}$ (Note 2)	_	-53	-48	dBc
Adjacent-channel leakage power ratio 6	ACPR6	$\Delta f = \pm 1.98 \text{ MHz}$ (Note 2)	_	-65	-60	dBc

Caution: The high-frequency power amplifier is sensitive to electrostatic discharge. When handling this product, ensure that the environment is protected against electrostatic discharge by using an earth strap, a conductive mat and an ionizer.

Electrical Characteristics 2 (IS-95 modulation, f = 887-925 MHz, Tc = 25°C, $Z_g = Z_l = 50 \Omega$)

Characteristics	Symbol	Tes	t Condition	Min	Тур.	Max	Unit
Output power 2	P _{o2}	$V_{CC1} = V_{CC2} = 3$ $V_{DC} = V_{con} = 2.8$ $P_i = adjust$		27.5	28.0	_	dBmW
Power gain 3	G _{p3}			25.0	27.0	_	dB
Collector current 3 (Note 1)	I _{CC3}	1 [395	435	mA
Bias circuit current 3	I _{DC3}				2.5	4.0	mA
Control current 3	Icon3	$V_{CC1} = V_{CC2} = 3$	3.5 V,	_	3.5	5.0	mA
Input VSWR 2	VSWRin2	$V_{DC} = V_{con} = 2.8$ $P_0 = 27.5$ dBmW	3 V	_	2.0	3.5	_
Receiving band noise 2	NRB2			_	-138	-136	dBmW /Hz
2nd harmonics 2	2fo2			_	-35	-30	dBc
3rd harmonics 2	3fo2			_	-45	-40	dBc
Out-of-band noise 2	N-3MHz2	fo = 888 MHz			-44	-40	dBmW /30kHz
Adjacent-channel leakage power ratio 7	ACPR7	$\Delta f = \pm 900 \text{ kHz}$ (Note 2)			-50	-46	dBc
Adjacent-channel leakage power ratio 8	ACPR8	∆f = ±1.98 MHz (Note 2)			-59	-55	dBc
Adjacent-channel leakage power ratio 9	ACPR9	$\Delta f = \pm 900 \text{ kHz}$ (Note 2)	$V_{CC1} = V_{CC2} = 3.3 V,$		-53	-48	dBc
Adjacent-channel leakage power ratio 10	ACPR10	$ \Delta f = \pm 1.98 \text{ MHz} $ (Note 2) $ V_{DC} = V_{con} = 2.8 \text{ V} $			-60	-55	dBc
Power gain 4	G _{p4}			22.0	25.0	28.0	dB
Collector current 4 (Note 1)	I _{CC4}	$V_{CC1} = V_{CC2} = 7$ $V_{DC} = V_{con} = 2.8$		_	130	155	mA
Bias circuit current 4	current 4 I _{DC4}		ον,	_	0.8	2.5	mA
Control current 4	I _{con4}	1		_	2.5	4.0	mA
Adjacent-channel leakage power ratio 11	ACPR11	$\Delta f = \pm 900 \text{ kHz}$ (Note 2)			-49	-46	dBc
Adjacent-channel leakage power ratio 12	ACPR12	$\Delta f = \pm 1.98 \text{ MHz}$ (Note 2)			-65	-60	dBc

Note1: $I_{CC} = Current$ of a V_{CC1} pin + current of a V_{CC2} pin.

Note2: ACPR

a) Pc (1.23 MHz) is average power measured for 1.23 MHz bandwidth with carrier frequency.

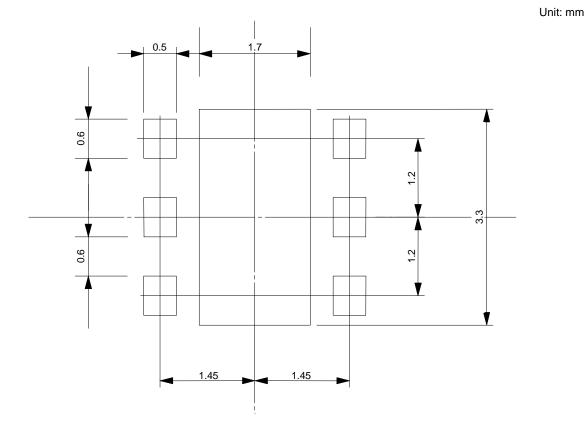
b) P (30 kHz) is average power measured for 30 kHz bandwidth with 900 kHz/1.98 MHz offset.

c) ACPR1 (or ACPR2) = P (30 kHz) $- P_c$ (1.23 MHz) dB

Note3: These electrical characteristics are measured using Toshiba standard test board in Toshiba standard measurement system.

Note4: CDMA 20001X	modulation	condition is	followina.

СН	RC	Data Rate	Power	Data
Pch	N/A	N/A	-3.75	0000000
Fch	3	9600 bps	0	Random
Sch	3	9600 bps	0	Random

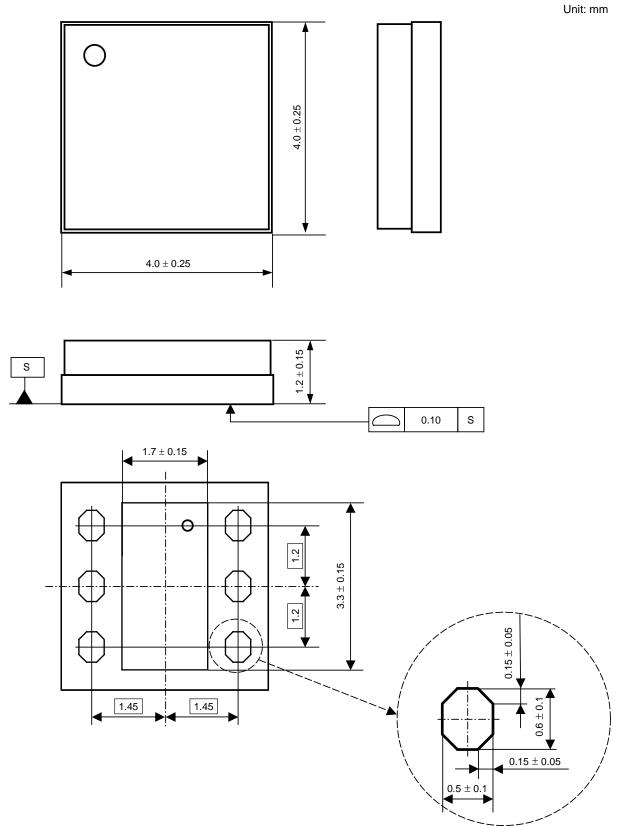

Electrical Characteristics 3 (1X modulation (Note 4), f = 887-925 MHz, Tc = -20 to 85°C, $Z_g = Z_l = 50 \Omega$)

Characteristics	Symbol	Test Condition		Min	Тур.	Max	Unit
Power gain 5	G _{p5}	$V_{CC1} = V_{CC2} = 3$ $V_{DC} = V_{con} = 2.8$	3.5 V, 3 V, P _o = 27.0dBmW	23.0	_	_	dB
Adjacent-channel power ratio 13	ACPR13	$\Delta f = \pm 900 \text{ kHz}$ (Note 2)	$V_{CC1} = V_{CC2} = 3.3 V,$	_	-49	-44	dBc
Adjacent-channel power ratio 14	ACPR14	$\Delta f = \pm 1.98 \text{ MHz}$ (Note 2)	$\label{eq:VDC} \begin{array}{l} V_{DC} = V_{con} = 2.8 \ \text{V}, \\ P_o = 26.0 \text{dBmW} \end{array}$	_	-57	-54	dBc
Adjacent-channel power ratio 15	ACPR15			_	-49	-44	dBc
Adjacent-channel power ratio 16	ACPR16	$\Delta f = \pm 1.98 \text{ MHz}$ (Note 2)	P _o =15.0dBmW	_	-57	-54	dBc
Receiving band noise 3	NRB3	$V_{CC1} = V_{CC2} = 3.5 \text{ V},$ $V_{DC} = V_{con} = 2.8 \text{ V}, P_0 = 27.0 \text{dBmW}$		_	-138	-136	dBmW /Hz
Stability 1	SPR1	$\begin{array}{l} V_{CC1} = V_{CC2} = 3.4 \ V \ to \ 4.2 \ V, \\ V_{DC} = V_{con} = 2.8 \ V, \\ P_o = 27.0 dBmW, \ Z_g = 50 \ \Omega, \\ Load \ V_{SWR} = 5:1 \ all \ phase \end{array}$		_	_	-55	dBc
Load mismatch 1		$\begin{array}{l} V_{CC1} = V_{CC2} = 3.4 \ V \ to \ 4.2 \ V, \\ V_{DC} = V_{con} = 2.8 \ V, \\ P_o = 27.0 dBmW, \ Z_g = 50 \ \Omega, \\ V_{SWR} \ LOAD \ 5:1 \ all \ phase \end{array}$		No	degrada	tion	_

Electrical Characteristics 4 (IS-95 modulation, f = 887-925 MHz, Tc = -20~85°C, $Z_g = Z_l = 50 \Omega$)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Power gain 6	G _{p6}	$V_{CC1} = V_{CC2} = 3.5 \text{ V},$ $V_{DC} = V_{con} = 2.8 \text{ V}, P_0 = 27.5 \text{dBmW}$	23.0	_	_	dB
Adjacent-channel power ratio 17	ACPR17	$ \Delta f = \pm 900 \text{ kHz} \\ (Note 2) $,	-47	-44	dBc
Adjacent-channel power ratio 18	ACPR18	$ \Delta f = \pm 1.98 \text{ MHz} \\ (\text{Note 2}) \begin{array}{l} \text{V}_{\text{DC}} = \text{V}_{\text{con}} = 2.8 \text{ V}, \\ \text{P}_{0} = 26.5 \text{dBmW} \end{array} $	_	-58	-54	dBc
Adjacent-channel power ratio 19	ACPR19			-47	-44	dBc
Adjacent-channel power ratio 20	ACPR20	$ \Delta f = \pm 1.98 \text{ MHz} \\ \text{(Note 2)} P_0 = 17.0 \text{dBmW} $	_	-58	-54	dBc
Receiving band noise 4	NRB4			-137	-135	dBmW /Hz
Stability 2	SPR2	$\begin{array}{l} V_{CC1} = V_{CC2} = 3.4 \ V \ to \ 4.2 \ V, \\ V_{DC} = V_{con} = 2.8 \ V, \\ P_0 = 27.5 \ dBmW, \ Z_g = 50 \ \Omega, \\ Load \ V_{SWR} = 5:1 \ all \ phase \end{array}$	_	_	-55	dBc
Load mismatch 2		$\begin{array}{l} V_{CC1} = V_{CC2} = 3.4 \ V \ to \ 4.2 V, \\ V_{DC} = V_{con} = 2.8 \ V \\ P_0 = 27.5 dBmW, \ Z_g = 50 \ \Omega, \\ V_{SWR} \ LOAD \ 5:1 \ all \ phase \end{array}$	No	degrada	tion	_

Recommend Foot Pattern



Pin Function

Pin No.	Symbol	Function
1	Pin	Power amplifier input. Internally DC blocked and matched to 50 Ω .
2	V _{CC1}	First stage collector supply
3	V _{CC2}	Second stage collector supply
4	Pout	Power amplifier output. Internally DC blocked and matched to 50 Ω .
5	V _{DC}	Power supply for bias circuit. Apply V_{con} or higher voltage.
6	V _{con}	Power control supply. The device is off when $V_{con} = 0$ V. To avoid damage to the device, do not apply a voltage to this pin when the pins V_{CC1} , V_{CC2} and V_{DC} are not supplied.
7	GND	Ground connection. The backside of the package should be soldered to a top side ground pad which is connected to the ground plane with multiple vias. The pad should have a short thermal path to the ground plane.

TOSHIBA

Package Dimensions

Weight: 0.055 g (typ.)

RESTRICTIONS ON PRODUCT USE

030619EAC

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.