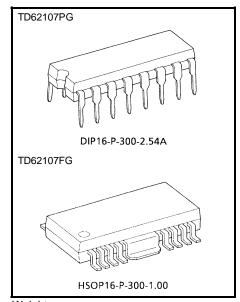
TOSHIBA Bipolar Digital Integrated Circuit Silicon Monolithic

TD62107PG,TD62107FG

4ch High-current Darlington Sink Driver

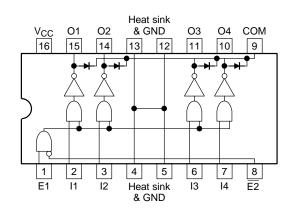
The TD62107PG/FG are high-voltage, high-current darlington drivers and enable inputs which can gate the outputs. All units feature integral clamp diodes for switching inductive loads.

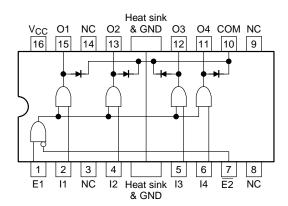

The TD62107PG/FG have a wide supply voltage range and all input are compatible with TTL and 5-V CMOS.

Application include relay, hammer, lamp and stepping moter drivers.

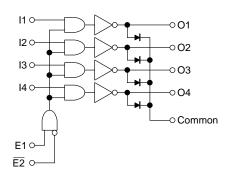
Please observe the thermal condition for using. This devices are a product for the Pb free(Sn-Ag).

Features


- Output current (single output) 750 mA (max)
- High sustaining voltage output: 45 V min (TD62107PG)
 35 V min (TD62107FG)
- Output clamp diodes
- Enable inputs E1, E2
- Wide supply voltage range $V_{CC} = 4.75$ to 7 V
- Input compatible with TTL and 5-V CMOS
- GND terminal = heat sink
- Package type-PG: DIP-16pin
- Package type-FG: HSOP-16pin

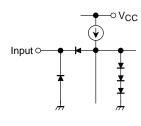

Weight DIP16-P-300-2.54A: 1.11 g (typ.) HSOP16-P-300-1.00: 0.50 g (typ.)

Pin Assignment (top view)

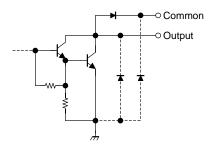

TD62107PG

TD62107FG

Schematics (each driver)



Truth Table


E1	E2	I1 to I4	O1 to O4
L	L	L or H	Disable OFF
L	Н	L or H	Disable OFF
Н	L	L or H	Enable In
Н	Н	L or H	Disable OFF

In = I1~I4

Input Equivalent Circuit

Output Equivalent Circuit

Note: The input and output parasitic diodes cannot be used as clamp diodes.

Maximum Ratings (Ta = 25°C)

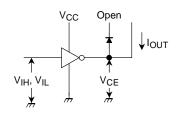
Characteristi	Symbol	Rating	Unit		
Supply voltage		Vcc	-0.5 to 17	V	
Output sustaining	PG	V== (0110)	-0.5 to 45	V	
voltage	FG	V _{CE} (SUS)	-0.5 to 35		
Output current		lout	750	mA	
Input voltage		V _{IN}	-0.5 to V _{CC} + 0.5	V	
Clamp diode reverse	PG	V _R	45	V	
voltage	FG	VR	35	V	
Clamp diode forword cur	rent	IF	500	mA	
Power discination	PG	D-	2.7 (Note 1)	W	
Power dissipation	FG	P _D	1.4 (Note 2)	VV	
Operating temperature		T _{opr}	-40 to 85	°C	
Storage temperature		T _{stg}	-55 to 150	°C	

Note 1: On glass epoxy PCB ($50 \times 50 \times 1.6$ mm Cu 50%)

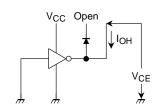
Note 2: On glass epoxy PCB (60 \times 30 \times 1.6 mm Cu 30%)

Recommended Operating Conditions ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

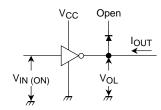
Characteristics		Symbol	Condition		Min	Тур.	Max	Unit
Supply voltage		V _{CC}	_		4.75	_	15	V
Output sustaining voltage	PG	V== (2002)	_		0	_	45	V
	FG	V _{CE} (SUS)			0	_	35	
			$T_{pw} = 25 \text{ ms}, \text{ Duty} = 75$	T _{pw} = 25 ms, Duty = 75%, 1 Circuit		_	500	
Output current	PG	I _{OUT}	T _{pw} = 25 ms, 4 Circuit	Duty = 30%	0	_	400	mA
	FG			Duty = 40%	_	_	300	
Input voltage		V _{IN}	_		0	_	V _{CC}	V
Clamp diode reverse voltage	PG	V-	_		_	_	45	V
	FG	V _R			_	_	35	
Clamp diode forward current		I _F	_		_	_	500	mA
Power dissipation	PG	P _D	_		_	_	1.0	W
	FG	L.D	Ta = 85°C	(Note 1)	_	_	0.7	VV

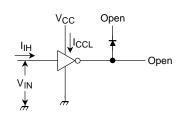

Note1: On Glass Epoxy PCB ($60 \times 30 \times 1.6$ mm Cu 30%)

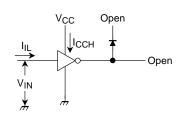
Electrical Characteristics (Ta = 25°C)

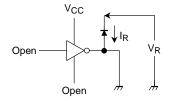

Characteristics		Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit		
Input voltage	High level		V_{IH}	1		2.0	_	V _{CC}	V	
	Low le	evel	V _{IL}] '		_	_	0.8	V	
Output current	High level	PG	ГОН	2	V _{CE} = 45 V, Ta = 75°C	-	_	100	μА	
		FG	·Оп		V _{CE} = 35 V, Ta = 85°C		_	100		
Output voltage	Low le	evel	V_{OL}	3	I _{OUT} = 50 mA		_	1.3	>	
Input current	High level		Ι _{ΙΗ}	4	V _{IN} = 13 V		_	100	μΑ	
input current	Low level		I _{IL}	5	V _{IN} = 0.4 V	_	_	-0.3	mA	
Clamp diada rayarsa au	PG		l-	6	V _R = 45 V	_	_	100	μΑ	
Clamp diode reverse current		FG	I _R	6	V _R = 35 V	_	_	100		
Clamp diode forward vol	Clamp diode forward voltage		V _F	7	I _F = 500 mA	_	_	2.0	V	
Supply current	Output high	Icc	Іссн	4	V _{CC} = 13 V, V _{IN} = 0 V Output open	_	_	13	mA	
	Output low		ICCL	5	V _{CC} = 13 V, V _{IN} = 5 V Output open	_	_	17	ША	
Turn or delen		PG	t	8	$V_{CC} = 5 \text{ V}, R_L = 90 \Omega$ $C_L = 15 \text{ pF}, V_{OUT} = 45 \text{ V}$	_	5	_		
Turn-on delay		FG	t _{ON}	8	$V_{CC} = 5 \text{ V}, R_L = 70 \Omega$ $C_L = 15 \text{ pF}, V_{OUT} = 35 \text{ V}$	_	5	_	μS	
Turn-off delay		PG	.	8	$V_{CC} = 5 \text{ V}, R_L = 90 \Omega$ $C_L = 15 \text{ pF}, V_{OUT} = 45 \text{ V}$	_	5	_	μS	
		FG	t _{OFF}	0	$V_{CC} = 5 \text{ V}, R_L = 70 \Omega$ $C_L = 15 \text{ pF}, V_{OUT} = 35 \text{ V}$	_	5	_		

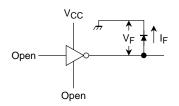
Test Circuit

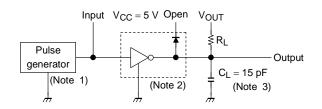

1. VIH, VIL

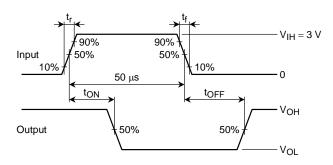

2. I_{OH}


3. V_{OL}


4. I_{IH}, I_{CCL}


5. IIL, I_{CCL}


6. I_R


7. V_F

8. ton, toff

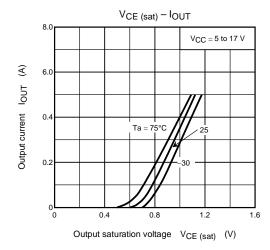
Input Condition

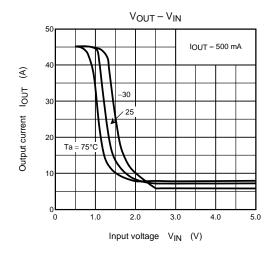
Note 1: Pulse width 50 µs, duty cycle 10%

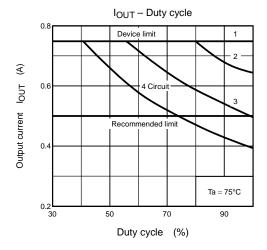
Output Impedance 50 Ω , $t_f \le$ 5ns, $t_f \le$ 10 ns

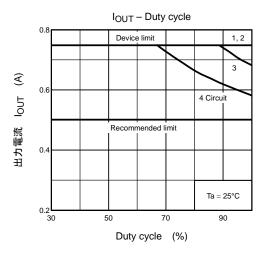
Note 2: $V_{IH} = 3 \text{ V}$, $E1 = V_{IH}$, E2 = GND, $V_{CC} = 5 \text{ V}$

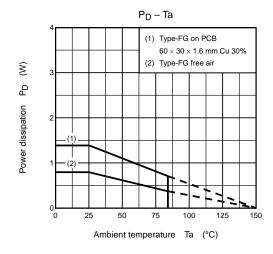
Note 3: CL includes probe and jig capacitance

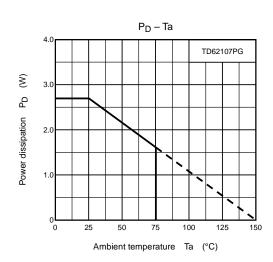

Precautions for Using

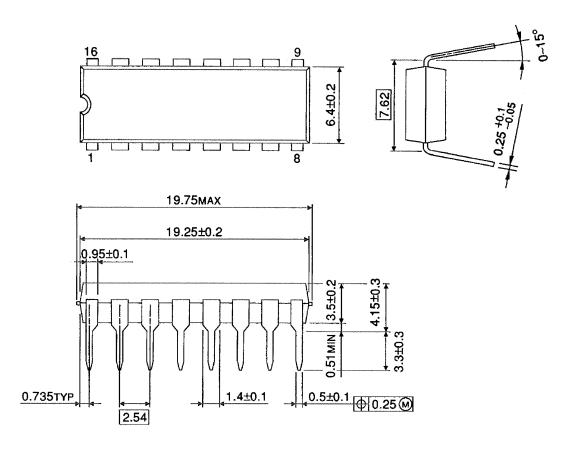

This IC does not include built-in protection circuits for excess current or overvoltage.

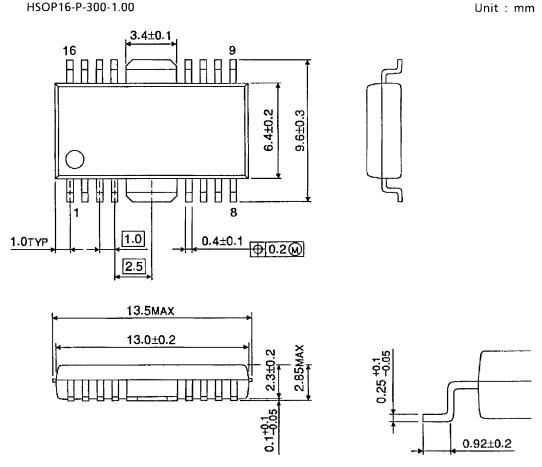

If this IC is subjected to excess current or overvoltage, it may be destroyed.


Hence, the utmost care must be taken when systems which incorporate this IC are designed.


Utmost care is necessary in the design of the output line, VCC, COMMON and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.






Package Dimensions

Weight: 1.11 g (typ.)

Package Dimensions

HSOP16-P-300-1.00

Weight: 0.50 g (typ.)

About solderability, following conditions were confirmed

- Solderability
 - (1) Use of Sn-63Pb solder Bath
 - solder bath temperature = 230°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - · solder bath temperature = 245°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

8