TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic # TAR5SB15, TAR5SB18, TAR5SB23, TAR5SB24, TAR5SB25, TAR5SB27, TAR5SB28, TAR5SB29, TAR5SB30, TAR5SB33 Point Regulators (Low-Dropout Regulator) The TAR5SBxx Series is comprised of general-purpose bipolar single-power-supply devices incorporating a control pin which can be used to turn them ON/OFF. Overtemperature and overcurrent protection circuits are built into the devices' output circuit. #### **Features** - Low stand-by current - Over-temperature/over-current protection - · Operation voltage range is wide. - · Maximum output current is high. - · Low dropout voltage - Small package (SOT-23 5 pin) - · Ceramic capacitors can be used. # SSOP5-P-0.95 Weight: 0.014 g (typ.) ## Pin Assignments (top view) Over-temperature/over-current protection functions are NOT guarantee maximum-ratings of these devices. Do not use devices under conditions in which their maximum ratings will be exceeded. ## **List of Products Number and Marking** | Products No. | Marking | |--------------|---------| | TAR5SB15 | 1B5 | | TAR5SB18 | 1B8 | | TAR5SB23 | 2B3 | | TAR5SB24 | 2B4 | | TAR5SB25 | 2B5 | | TAR5SB27 | 2B7 | | TAR5SB28 | 2B8 | | TAR5SB29 | 2B9 | | TAR5SB30 | 3B0 | | TAR5SB33 | 3B3 | ## **Marking on the Product** Example: TAR5SB30 (3.0 V output) ## **Maximum Ratings (Ta = 25°C)** | Characteristics | Symbol | Rating | Unit | |-----------------------------|------------------|--------------|-------| | Supply voltage | V _{IN} | 15 | V | | Output current | I _{OUT} | 200 | mA | | Power dissipation | P _D | 200 (Note 1) | mW | | | | 380 (Note 2) | 11100 | | Operation temperature range | T _{opr} | -40 to 85 | °C | | Storage temperature range | T _{stg} | -55 to 150 | °C | Note 1: Unit Ratintg Note 2: Mounted on a glass epoxy circuit board of 30 \times 30 mm. Pad dimension of 50 mm^2 ## **TAR5SB15, TAR5SB18** Electrical Characteristic (unless otherwise specified, $V_{IN} = V_{OUT} + 1$ V, $I_{OUT} = 50$ mA, $C_{IN} = 1$ μ F, $C_{OUT} = 10$ μ F, $C_{NOISE} = 0.01$ μ F, $T_j = 25$ °C) | Characteristics | Symbol | Test Condition | Min | Тур. | Max | Unit | |-------------------------|-----------------------|---|-----|------|-----------------|---------------| | Output voltage | V _{OUT} | Please refer to the Output Voltage Accuracy table. | | | | | | Line regulation | Reg·line | $V_{OUT} + 1 \text{ V} \le V_{IN} \le 15 \text{ V},$ $I_{OUT} = 1 \text{ mA}$ | _ | 3 | 15 | mV | | Load regulation | Reg·load | 1 mA ≦ I _{OUT} ≦ 150 mA | _ | 25 | 75 | mV | | Quiescent current | I _{B1} | I _{OUT} = 0 mA | | 170 | _ | | | | I _{B2} | I _{OUT} = 50 mA | _ | 550 | 850 | μΑ | | Stand-by current | I _{B (OFF)} | V _{CT} = 0 V | _ | _ | 0.1 | μА | | Output noise voltage | V _{NO} | $I_{OUT} = 10 \text{ mA},$
10 Hz $\leq f \leq 100 \text{ kHz}, Ta = 25^{\circ}\text{C}$ | _ | 30 | _ | μV_{rms} | | Temperature coefficient | T _{CVO} | -40 °C $\leq T_{opr} \leq 85$ °C | _ | 100 | _ | ppm/°C | | Input voltage | V _{IN} | _ | 2.4 | _ | 15 | V | | Ripple rejection | R.R. | I _{OUT} = 10 mA, f = 1 kHz,
V _{Ripple} = 500 mV _{p-p} , Ta = 25°C | _ | 70 | _ | dB | | Control voltage (ON) | V _{CT} (ON) | _ | 1.5 | _ | V _{IN} | V | | Control voltage (OFF) | V _{CT} (OFF) | _ | _ | _ | 0.4 | V | | Control current (ON) | I _{CT (ON)} | V _{CT (ON)} = 1.5 V | | 3 | 10 | μА | | Control current (OFF) | I _{CT} (OFF) | V _{CT (OFF)} = 0 V | | 0 | 0.1 | μА | ## TAR5SB23~TAR5SB33 Electrical Characteristic (unless otherwise specified, $V_{IN} = V_{OUT} + 1$ V, $I_{OUT} = 50$ mA, $C_{IN} = 1$ μF , $C_{OUT} = 10$ μF , $C_{NOISE} = 0.01$ μF , $T_j = 25$ °C) | Characteristics | Symbol | Test Condition | Min | Тур. | Max | Unit | |-------------------------|-----------------------------------|---|-----------------------------|------|-----------------|---------------| | Output voltage | V _{OUT} | Please refer to the Output Voltage Accuracy table. | | | | | | Line regulation | Reg·line | $V_{OUT} + 1 \text{ V} \le V_{IN} \le 15 \text{ V},$
$I_{OUT} = 1 \text{ mA}$ | | 3 | 15 | mV | | Load regulation | Reg·load | 1 mA ≤ I _{OUT} ≤ 150 mA | _ | 25 | 75 | mV | | Quiescent current | I _{B1} | I _{OUT} = 0 mA | | 170 | _ | μА | | | I _{B2} | I _{OUT} = 50 mA | = 50 mA — 550 | | 850 | | | Stand-by current | I _{B (OFF)} | V _{CT} = 0 V | _ | _ | 0.1 | μА | | Output noise voltage | V _{NO} | I _{OUT} = 10 mA,
10 Hz ≦ f ≦ 100 kHz, Ta = 25°C | _ | 30 | _ | μV_{rms} | | Dropout voltage | V _{IN} -V _{OUT} | I _{OUT} = 50 mA | _ | 130 | 200 | mV | | Temperature coefficient | T _{CVO} | $-40^{\circ}\text{C} \le \text{T}_{opr} \le 85^{\circ}\text{C}$ | _ | 100 | _ | ppm/°C | | Input voltage | V _{IN} | _ | V _{OUT}
+ 0.2 V | _ | 15 | V | | Ripple rejection | R.R. | I _{OUT} = 10 mA, f = 1 kHz,
V _{Ripple} = 500 mV _{p-p} , Ta = 25°C | _ | 70 | _ | dB | | Control voltage (ON) | V _{CT (ON)} | _ | 1.5 | _ | V _{IN} | V | | Control voltage (OFF) | V _{CT (OFF)} | _ | _ | _ | 0.4 | V | | Control current (ON) | I _{CT (ON)} | V _{CT} (ON) = 1.5 V | _ | 3 | 10 | μА | | Control current (OFF) | I _{CT (OFF)} | V _{CT} (OFF) = 0 V | _ | 0 | 0.1 | μА | Output Voltage Accuracy (V_{IN} = V_{OUT} + 1 V, I_{OUT} = 50 mA, C_{IN} = 1 μ F, C_{OUT} = 10 μ F, C_{NOISE} = 0.01 μ F, T_j = 25°C) | Product No. | Symbol | Min | Тур. | Max | Unit | |-------------|--------|------|------|------|------| | TAR5SB15 | | 1.44 | 1.5 | 1.56 | | | TAR5SB18 | Vout | 1.74 | 1.8 | 1.86 | | | TAR5SB23 | | 2.24 | 2.3 | 2.36 | | | TAR5SB24 | | 2.34 | 2.4 | 2.46 | | | TAR5SB25 | | 2.43 | 2.5 | 2.57 | V | | TAR5SB27 | | 2.63 | 2.7 | 2.77 | V | | TAR5SB28 | | 2.73 | 2.8 | 2.87 | | | TAR5SB29 | | 2.83 | 2.9 | 2.97 | | | TAR5SB30 | | 2.92 | 3.0 | 3.08 | | | TAR5SB33 | | 3.21 | 3.3 | 3.39 | | ## **Thermal Resistance Evaluation Board** Circuit board material: glass epoxy, Circuit board dimension: 30 mm \times 30 mm, Copper foil pad area: 50 mm² (t = 0.8 mm) ## **Recommended Application Circuit** | Control Level | Operation | |---------------|-----------| | HIGH | ON | | LOW | OFF | The noise capacitor should be connected to NOISE pin to GND for stable operation. The recommended value is higher than 0.0047 $\mu F\!.$ 2001-04-13 5 # **Package Dimensions** SSOP5-P-0.95 Unit: mm Weight: 0.014 g (typ.) #### RESTRICTIONS ON PRODUCT USE 000707EBA - TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. - The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. - The products described in this document are subject to the foreign exchange and foreign trade laws. - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. - The information contained herein is subject to change without notice.