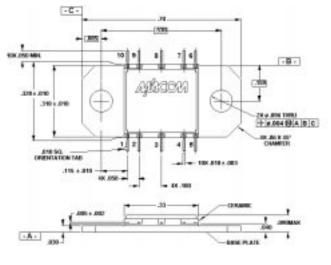
M/A-COM

GaAs MMIC VSAT Power Amplifier, 0.5W 14.0 - 14.5 GHz

Features

- High Linear Gain: 28 dB Typ.
- High Saturated Output Power: +28 dBm Typ.
- High Power Added Efficiency: 22% Typ.
- 50Ω Input/Output Broadband Matched
- High Performance Ceramic Bolt Down Package

Description


www.macom.com

M/A-COM's AM42-0041 is a four-stage MMIC linear power amplifier in a ceramic bolt down style hermetic package. The AM42-0041 employs a fully matched chip with internally decoupled Gate and Drain bias networks. The AM42-0041 is designed to be operated from a constant current Drain supply. By varying the Gate bias voltage, the saturated output power performance of this device can be tailored for various applications.

The AM42-0041 is ideally suited for use as an output stage or a driver, in applications for VSAT systems. This design is fully monolithic and requires a minimum of external components.

M/A-COM's AM42-0041 is fabricated using a mature 0.5 micron MBE based GaAs MESFET process. The process features full passivation for increased performance and reliability. This product is 100% RF tested to ensure compliance to performance specifications.

CR-15

Notes: (unless otherwise specified) 1. Dimensions are in inches. 2. Tolerance: $.XXX = \pm 0.005$ $.XX = \pm 0.010$

Ordering Information

Part Number	Package	
AM42-0041	Ceramic Bolt Down Package	

Electrical Specifications: $T_A = +25^{\circ}C$, $V_{DD} = +8V$, V_{GG} adjusted for Ids = 500 mA, $Z_0 = 50\Omega$, F = 14.0 - 14.5 GHz

Parameter	Abbv.	Test Conditions	Units	Min.	Тур.	Max.
Linear Gain	GL	P _{IN} ≤ -10 dBm	dB	27	28	—
Input VSWR	VSWR _{IN}	P _{IN} ≤ -10 dBm	—	—	2.5:1	2.7:1
Output VSWR	VSWR _{OUT}	P _{IN} ≤ -10 dBm	—	—	2.5:1	—
Saturated Output Power	P _{SAT}	P_{IN} = +3 dBm, I_{DD} =500 mA Typ.	dBm	27.0	28.0	29.0
Output Power Flatness vs. Frequency	P _{SAT}	P_{IN} = +3 dBm, I_{DD} =500 mA Typ.	dB	—	1.0	1.5
Output Power vs. Temperature (with respect to T_A =+25°C)	P _{SAT}	P_{IN} = +3 dBm, I_{DD} = 500 mA Typ. T_{A} = -40°C to +70°C	dB	—	±0.4	—
Noise Figure	NF	$P_{IN} \leq -10 \text{ dBm}, I_{DD}=500 \text{ mA Typ}.$	dB	—	7	—
Drain Bias Current	I _{DD}	P _{IN} =+3 dBm	mA	400	500	600
Gate Bias Voltage	V _{GG}	P _{IN} = +3 dBm, I _{ds} =500 mA Typ.	V	-2.4	-1.0	-0.4
Gate Bias Current	I _{GG}	P _{IN} = +3 dBm, I _{ds} =500 mA Typ.	mA	—	5	15
Thermal Resistance	θ_{JC}	25°C Heat Sink	°C/W	_	9.5	_
Power Added Efficiency	PAE	P_{IN} = +3 dBm, I_{ds} =500 mA Typ.	%	_	22	_

Absolute Maximum Ratings^{1,2,3,4}

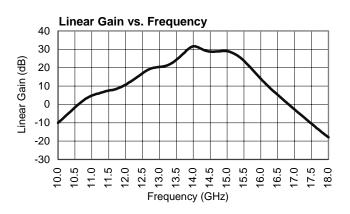
Parameter	Absolute Maximum
Input Power	+23 dBm
V _{DD}	+12 Volts
V _{GG}	-3 Volts
V _{DD} - V _{GG}	12 Volts
I _{ds}	1000 mA
Channel Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

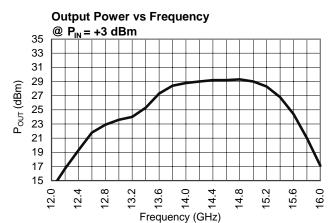
- 1. Operation of this device outside any of these limits may cause permanent damage.
- 2. Case Temperature $(T_c) = +85^{\circ}C$.
- 3. Nominal bias is obtained by first connecting -2.4 volts to pin 5 or pin 6 (V_{GG}), followed by connecting +8 volts to pin 1 or pin 10 (V_{DD}). Note sequence. Adjust V_{GG} for a drain current of 500 mA typical.
- 4. RF ground and thermal interface is the flange (case bottom). Adequate heat sinking is required.
- 5. No dc bias voltage appears at the RF ports.
- 6. The dc resistance at the input and output ports is a short circuit. No voltage is allowed on these ports.
- 7. For optimum IP₃ performance, the V_{DD} bypass capacitors should be placed within 0.5 inches of the V_{DD} leads.

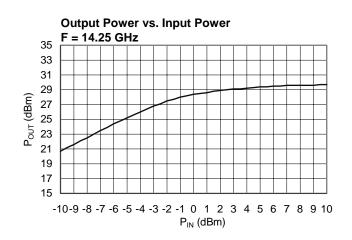
Typical Bias Configuration^{3,4,7}

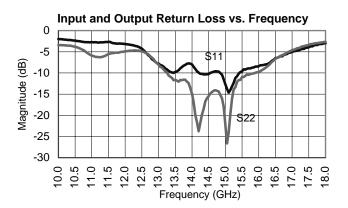
Pin Configuration

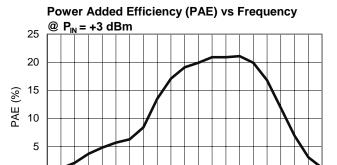
Pin No.	Pin Name	Description	
1	V _{DD}	Drain Supply	
2	GND	DC and RF Ground	
3	RF In	RF Input	
4	GND	DC and RF Ground	
5	V _{GG}	Gate Supply	
6	V_{GG}	Gate Supply	
7	GND	DC and RF Ground	
8	RF Out	RF Output	
9	GND	DC and RF Ground	
10	V _{DD}	Drain Supply	


M/A-COM Division of AMP Incorporated North America: Tel. (800) 366-2266, Fax (800) 618-8883 Asia/Pacific: Tel.+85 2 2111 8088, Fax +85 2 2111 8087 Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020


www.macom.com


15.6


14.8 15.2 16.0


Typical Performance @ +25°C

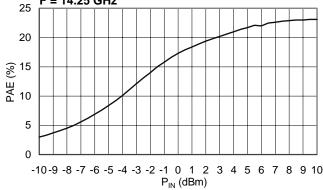
0

12.0

12.4

12.8

13.2


13.6

Power Added Efficiency (PAE) vs. Input Power F = 14.25 GHz

14.0

Frequency (GHz)

14.4

M/A-COM Division of AMP Incorporated North America: Tel. (800) 366-2266, Fax (800) 618-8883 Asia/Pacific: Tel.+85 2 2111 8088, Fax +85 2 2111 8087 Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020

.....

www.macom.com

AMP and Connecting at a Higher Level are trademarks. Specifications subject to change without notice.

M/A-COM Division of AMP Incorporated ■ North America: Tel. (800) 366-2266, Fax (800) 618-8883 ■ Asia/Pacific: Tel.+85 2 2111 8088, Fax +85 2 2111 8087 ■ Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020

