

1.5 Watt Ku-Band VSAT Power Amplifier 13.75 - 14.5 GHz

AM42-0042

Features

- High Linear Gain: 32 dB Typ.
- High Saturated Output Power: +32 dBm Typ.
- High Power Added Efficiency: 25% Typ.
- 50 Ω Input/Output Broadband Matched
- Integrated Output Power Detector

Description

M/A-COM's AM42-0042 is a four stage MMIC power amplifier in a bolt down ceramic package, allowing easy assembly. The AM42-0042 employs a fully matched chip with internally decoupled gate and drain bias networks. The AM42-0042 is designed to operate from a constant current drain supply or a constant voltage gate supply. By varying the bias conditions, the saturated output power performance of this device may be tailored for various applications.

The AM42-0042 is ideally suited for use as an output stage or a driver amplifier in VSAT systems. The AM42-0042 includes internal supply line bypassing in the package, minimizing the number of external components required.

M/A-COM's AM42-0042 is fabricated using a mature 0.5 micron MBE based GaAs MESFET process. The process features full passivation for increased performance and reliability. This product is 100% RF tested to ensure compliance to performance specifications.

Notes: (Unless Otherwise Specified) 1. Dimensions are in inches. 2. Tolerance: in .xxx = \pm .005 .xx = \pm .010

Ordering Information

Part Number	Package
AM42-0042	Ceramic Bolt Down Package

Electrical Specifications: V_{DD} = +8 V, V_{GG} adjusted for Ids = 750 mA, 13.75 - 14.5 GHz, Zo = 50 Ω , T_A = +25 °C.

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Linear Gain	Pin = -20 dBm, lds = 750 mA Typ.	dB	29.5	32.0	36.5
Input VSWR	Pin = +3 dBm, Ids = 750 mA Typ.			2.0:1	2.7:1
Output VSWR	Pin = -20 dBm, Ids = 750 mA Typ.			2.0:1	
Output Power	Pin = +3 dBm, lds = 750 mA Typ.	dBm	31.0	32.0	
Output Power vs. Frequency	Pin = +3 dBm, lds = 750 mA Typ.	dB		±0.3	±0.7
Output Power vs. Temperature	$T_A = -40^{\circ}C$ to +85°C, Pin = +3 dBm	dB		±0.5	
Drain Bias Current	Pin = +3 dBm	mA	600	750	900
Gate Bias Voltage	Pin = +3 dBm, lds = 750 mA Typ.	V	-2.0	-1.0	-0.4
Gate Bias Current	Pin = +3 dBm, lds = 750 mA Typ.	mA		10	20
Thermal Resistance (θ_{JC})	25°C Heat Sink	°C/W		8.0	
Second Harmonic	Pin = +3 dBm, lds = 750 mA Typ.	dBc		-35	
Third Harmonic	Pin = +3 dBm, Ids = 750 mA Typ.	= 750 mA Typ. dBc -45			
Detector Voltage	Pin = +3 dBm, lds = 750 mA Typ.	V		2.4	

M/A-COM Inc.

North America: Tel. (800) 366-2266 Fax (800) 618-8883 Asia/Pacific: Tel. +81 3 3263-8761 Fax +81 3 3263-8769 Europe:

Tel. +44 (1344) 869-595 Fax +44 (1344) 300-020

. 1

Absolute Maximum Ratings ^{1, 2}

Parameter	Absolute Maximum		
Input Power	+13 dBm		
V _{DD}	+10 volts		
V _{GG}	-3 volts		
V _{DD} - V _{GG}	12 volts		
lds	1000 mA		
Channel Temperature	+150 °C		
Operating Temperature	-40 °C to +85 °C		
Storage Temperature	-65 °C to +150 °C		

1. Exceeding any one or a combination of these limits may cause permanent damage.

2. Adequate heat sinking and grounding required on flange base.

Pin Configuration

Pin No.	Pin Name	Description	
1	VDD	Drain Supply	
2	GND	DC and RF Ground	
3	RF In	RF Input	
4	GND	DC and RF Ground	
5	VGG	Gate Supply	
6	DET	Output Power Detector	
7	GND	DC and RF Ground	
8	RF Out	RF Output	
9	GND	DC and RF Ground	
10	VDD	Drain Supply	

3. Apply -2 volts to pin 5 (V_{GG}), prior to applying +8 volts to pins 1 or 10 (V_{PG}). Adjust V_{QG} for twoiced drain current

10 (V_{DD}). Adjust V_{GG} for typical drain current. 4. External DC blocking capacitors required on the RF ports.

5. For optimum IP3 performance, V_{DD} bypass capacitors should be placed within 0.5 inches of the V_{DD} leads.

Typical Bias Configuration^{3,4,5}

2

٠