12-Bit, 100 MSPS D/A Converters

FEATURES

100 MSPS Update Rate
ECL/TTL Compatibility
Low Glitch Impulse: 100 pV -s
Fast Settling: 30 ns to ± 1 LSB
Low Power: $\mathbf{7 0 0 ~ m W ~}$
APPLICATIONS
ATE
Signal Reconstruction
Arbitrary Waveform Generators
Digital Synthesizers
 The AD9712 akd AD9713 are to-analog converters constrtuted in avadvar) ced otide isolated bipolar process. The AD9712 is an ECL-comprtibe dqvice featuring update rates of 100 MSPS minimum; the Th compatible AD9713 will update at 80 MSPS minimur
Designed for direct digital synthesis, waveform reconstruction, and high resolution imaging applications, both devices feature low glitch impulse of $100 \mathrm{pV}-\mathrm{s}$; and fast settling times of 30 ns to ± 1 LSB. Both units are characterized for dynamic performance, and have excellent harmonic suppression.

Plastic DIP Pinout Designations (Top View)

FUNCTIONAL BLOCK DIAGRAM

PLCC Pinout Designations

REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Tel: 617/329-4700 Fax: 617/326-8703 Twx: 710/394-6577 West Coast 714/641-9391 Central 214/231-5094

AD9712/AD9713-SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$
Positive Supply Voltage ($+\mathrm{V}_{\mathrm{S}}$) (AD9713 Only)
Negative Supply Voltage ($-\mathrm{V}_{\mathrm{S}}$)
(AD9712 and AD9713) $-7 \mathrm{~V}$
DAC Outputs to ANALOG RETURN +0.5 V to -2 V
Digital Input Voltages ($\mathrm{D}_{1}-\mathrm{D}_{12}$, LATCH ENABLE)
AD9712.
AD9713.
.0 V to $-\mathrm{V}_{\mathrm{s}}$
AD9713. 0 V to $+\mathrm{V}_{\mathrm{s}}$
Internal Reference Output Current $-20 \mu \mathrm{~A}$ to $+500 \mu \mathrm{~A}$
Control Amplifier Input Voltage Range 0 V to -4 V
Control Amplifier Output Current $\pm 2.5 \mathrm{~mA}$

REFERENCE IN Voltage Range -3.7 V to $-\mathrm{V}_{\mathrm{S}}$
Analog Output Current ($\mathrm{I}_{\mathrm{OUT}}$ or $\overline{\mathrm{I}_{\text {OUT }}}$) 30 mA Operating Temperature Range

ELECTRICAL CHARAGTERISTICS $\left(-v_{s}=-5.2 V_{i}+v_{s}=+5 V_{(\text {(AD9713 }} \text { Only }^{\prime}\right)_{\text {; CONTROL AMP }}$ IN $=-1.2 \mathrm{~V}$ (external); $\mathrm{R}_{\text {sET }}=7.5 \mathrm{k} \Omega$, unless otherwise noted)

AD9712/AD9713

${ }^{16}$ Measured at $\pm 5 \%$ of $+V_{s}$ (AD9713 only) and $-V_{S}$ (AD9712 or AD9713) using external reference.

${ }^{12}$ Data must remain stable prior to falling edge of LATCH ENABLE signal for specified time.
${ }^{13}$ Data must remain stable after rising edge of LATCH ENABLE signal for specified time.
${ }^{14}$ Update rate $\leq 50 \mathrm{MSPS}$; output frequency $=5 \mathrm{MHz}$.
 Specifications subject to change withour notice.

EXPLANATION OF TEST LEVELS

Level

I - 100\% production tested.
II - 100% production tested at $+25^{\circ} \mathrm{C}$, and sample tested at specified temperatures.
III - Sample tested only.
IV - Parameter is guaranteed by design and characterization testing.
V - Parameter is a typical value only.
VI - All devices are 100% production tested at $+25^{\circ} \mathrm{C}$. 100% production tested at temperature extremes for extended temperature devices; sample tested at temperature extremes for commercial/industrial devices.

ORDERING GUIDE

Model	Description	Package Option
AD9712JN	ECL-Compatible Plastic DIP	N-28
AD9712JP	ECL-Compatible PLCC	P-28A
AD9713JN	TTL-Compatible Plastic DIP	N-28
AD9713JP	TTL-Compatible PLCC	P-28A

${ }^{*} \mathrm{~N}=$ Plastic DIP; $\mathbf{P}=$ Plastic Leaded Chip Carrier .

AD9713/AD9713

AD9712/AD9713 PIN DESCRIPTIONS

THEORY AND APPLICATIONS

The AD9712 and AD9713 high speed digital-to-analog converters utilize Most Significant Bit (MSB) decoding and segmentation techniques to reduce glitch impulse and maintain linearity withour trimming.
As shown in the functional block diagram, the design is based on four main subsections: the Decoder/Driver circuits, the Transparent Latches, the Switch Network and the Control Amplifier. An internal band-gap reference is also included to allow operation with a minimum of external components.

Digital Inputs

The AD9712 employs single-ended ECL-compatible inputs for data inputs $\mathrm{D}_{1}-\mathrm{D}_{12}$ and LATCH ENABLE. The internal ECL midpoint reference is designed to match 10 K ECL device thresholds. On the AD9713, a TTL translator is added at each input; with this exception, the AD9712 and AD9713 are In the Decoder/Driversection, the four MSBs $\left(\mathrm{D}_{1}-\mathrm{D}_{4}\right)$ are pecoded to 15 "thermometer dode" lines. An equalizing delay is included for the eqght/Least Sigqificapt Bits (LSBs) and LATCH ENA/BI/E. This delay mirmizes data skew, and data scupand hyld tmepat the ikch in(puts; this is inportynt when delay, skew calnsed by the decpding circuis wo wld degpade glitch impulse.
The latches operate in their transparent mode whep LATCH ENABLE (Pin 26) is at logic level "0." The latches can be uedd to synchronize data to the current switches by applyins a narrow LATCH ENABLE pulse with proper data setup and hold times as shown in the timing diagram. With an external transparent latch at each data input clocked out of phase with the DAC, the AD9712/AD9713 operates in a master slave (edge-triggered) mode.

Although the AD9712/AD9713 chip is designed to provide isolation from digital inputs to the outputs, some coupling of digital transitions is inevitable, especially with TTL or CMOS inputs applied to the AD9713. Digital feedthrough can be reduced by forming a low-pass filter using a resistor in series with the capacitance of each digital input.

References

As shown in the functional block diagram, the internal band-gap reference, control amplifier and reference input are pinned out for maximum user flexibility when setting the reference.

When using the internal reference, REFERENCE OUT (Pin 20) should be connected to CONTROL AMP IN (Pin 19). CONTROL AMP OUT ($\operatorname{Pin} 18$) should be connected to REFERENCE IN (Pin 17) through an 18Ω resistor. A $0.1 \mu \mathrm{~F}$ ceramic capacitor from $\operatorname{Pin} 17$ to $-V_{\mathrm{S}}$ (Pin 15) improves settling by decoupling switching noise from the current sink base line. A reference current cell provides feedback to the control amp by sinking current through $\mathrm{R}_{\text {SET }}(\operatorname{Pin} 24)$.
Full-scale output current is determined by the voltage at CONTROL AMP IN ($\mathrm{V}_{\mathrm{REF}}$) and $\mathrm{R}_{\text {SET }}$ according to the equation:

$$
I_{O U T}(F S)=V_{R E F} / R_{S E T} \times 128
$$

The internal reference is nominally -1.26 V with a tolerance of $\pm 10 \%$ and typical drift over temperature of $300 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. If
greater accuracy or better temperature stability is required, an external reference can be utilized. The AD589 reference shown in Figure 1 features $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift over temperatures from 0 to $+70^{\circ} \mathrm{C}$.

Figure 1. Use of AD589 as External Reference
Two modes of multiplying operation are possible with the AD9712/AD9713. Signals with bandwidths up to 400 kHz and input swings from -0.1 V to -1.2 V can be applied to the CONTROL AMP input as shown in Figure 2. Because the control amplifier is internally compensated, the $0.1 \mu \mathrm{~F}$ capacitor at Pin 17 can be eliminated to maximize the multiplying bandwidth. However, it should be noted that settling time for chapges to the digital inputs will be degraded.

Figure 2. Low Frequency Multiplying Circuit

The REFERENCE IN pin can also be driven directly for wider bandwidth multiplying operation. The analog signal for this mode of operation must have a signal swing in the range of -4 V to -5.2 V . This can be implemented by capacitively coupling into REFERENCE IN an ac signal and establishing a dc bias of -4.0 V to -5.2 V , as shown in Figure 3; or by driving REFERENCE IN with a low impedance op amp whose signal swing is limited to the stated range.

Figure 3. Wideband Multiplying Circuit

AD9712/AD9713

Outputs

The Switch Network controls complementary current outputs $\mathrm{I}_{\text {OUT }}$ and $\overline{\mathrm{I}_{\text {OUT }}}$. As indicated earlier, $\mathrm{D}_{1}-\mathrm{D}_{4}$ are decoded into 15 "thermometer code" lines which drive matched current sources. D_{5} and D_{6} control weighted current sources; and $D_{7}-D_{12}$ are applied to the R-2R network.
This segmentation reduces frequency domain errors due to ${ }^{\circ}$ glitch impulse. Current is steered to either $\mathrm{I}_{\mathrm{OUT}}$ or $\overline{\mathrm{I}_{\text {OUT }}}$ in proportion to the digital input code. The sum of the two currents is always equal to the full-scale output current minus one LSB.
The current output can be converted to a voltage by resistive loading as shown in Figure 4. Both $\mathrm{I}_{\text {Out }}$ and $\overline{\mathrm{I}_{\text {OUT }}}$ should be loaded equally for best overall performance. The voltage which is developed is the product of the output current and the value of the load resistor.

Figure 4. Typical Resistive Load Connection
When operating at the nominal full-scale current of 20.48 mA , the voltage swing will be from 0 to -1.024 V across 50Ω resistors. Bipolar outputs are possible by sourcing a current equal to half the DAC full-scale current into the load resistor.
An alternate method of converting the current output to voltage is by driving the summing node of an operational amplifier directly with a feedback resistor selected according to the equation:

$$
R_{F B}=V_{O U T}(F S) / I_{O U T}(F S)
$$

A current feedback amplifier such as the AD9610 offers significantly faster settling and greater bandwidth than a conventional voltage feedback op amp. The feedback resistor for the AD9610 must be $1.5 \mathrm{k} \Omega$ or greater to maintain stability. This value for R_{FB}, along with the 20.48 mA full-scale output current, results in a full-scale output of 30 V , which exceeds the output range of the AD9610.
Full-scale output voltage can be reduced by either reducing the DAC's full-scale output current, or by using a current divider at
the DAC output as shown in Figure 5. Reducing DAC full-scale output current degrades both linearity and settling time; therefore, the current divider method is preferable.

Figure 5. IN Conversion Using Current Feedback Amp
The DAC output is not clamped at virtual ground in this configuration because of the series resistance R_{FF}. The value of R_{FF} is selected according to the equation:

Power and Grounding

Maintaining low noise on power supplies and ground is critical for obtaining optimum results with the AD9712 or AD9713. DACs are most often used in circuits which are predominantly digital. To preserve 12 -bit performance, especially at conversion speeds up to 100 MSPS, special precautions are necessary for power supplies and grounding.
Ideally, the DAC should have a separate analog ground plane. All ground pins of the DAC, as well as reference and analog output components, should be tied directly to this analog ground plane. The DAC's ground plane should be connected to the system ground plane at a single point.
Ferrite beads, along with high frequency, low inductance decoupling capacitors, should be used for the supply connections to isolate digital switching currents from the DAC supply pins. Separate isolation networks for the digital and analog supply connections will further reduce supply noise coupling to the output.
Molded socket assemblies should be avoided even when prototyping circuits with the AD9712 or AD9713. When the DAC cannot be directly soldered into the board, individual pin sockets such as AMP \#6-330808-0 (knock-out end), or \#60330808-3 (open end) should be used. These have much less effect on interlead capacitance than do molded assemblies.

AD9712/AD9713

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm)

28-Pin Plastic DIP (Suffix N)

