

Dual-Channel Isolators with Integrated DC/DC Converter, 50 mW

Preliminary Technical Data

ADuM5240/ADuM5241/ADuM5242

FEATURES

Integrated isolated DC/DC converter
Regulated 5V/10 mA output
Dual dc-to-10 Mbps (NRZ) signal isolation channels
Narrow body SOIC 8-lead package
High temperature operation: 105°C
Precise timing characteristics:
3 ns maximum pulse-width distortion
3 ns maximum channel-to-channel matching
70 ns maximum propagation delay

High common-mode transient immunity: > 25 kV/ μ s Safety and regulatory approvals (pending)

UL recognition

2500 V rms for 1 minute per UL 1577
CSA component acceptance notice #5A
VDE certificate of conformity
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01

DIN EN 60950 (VDE 0805): 2001-12; DIN EN 60950: 2000

V_{IORM} = 425 V peak

GENERAL DESCRIPTION

The ADuM524x¹ are dual-channel digital isolators having an integrated DC/DC converter. Based on Analog Devices' *i*Coupler® technology, the DC/DC converter provides up to 50 mW of regulated, isolated power at +5V. This eliminates the need for a separate isolated DC/DC converter in low-power isolated designs. Analog Devices' chip-scale transformer *i*Coupler® technology is used both for the isolation of the logic signals as well as for the DC/DC converter. The result is a small form-factor total-isolation solution.

ADuM524x units may be used in combination or with other *i*Coupler products to achieve greater channel counts.

The ADuM524x isolators provide two independent isolation channels in a variety of channel configurations and data rates (see Ordering Guide) operating off a 5V input supply.

FUNCTIONAL BLOCK DIAGRAM

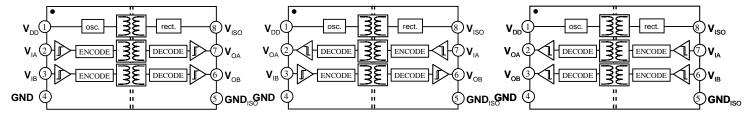


Figure 1. ADuM5240 Functional Block Diagram

Figure 2. ADuM5241 Functional Block Diagram

Figure 3. ADuM5242 Functional Block Diagram

¹ Protected by U.S. Patents 5,952,849 6,873,065 and 7,075,329 Other patents pending.

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS¹

All voltages are relative to their respective ground. All min/max specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $T_A = 25$ °C, $V_{DD} = 5.0$ V, $V_{ISO} = 5.0$ V.

Table 1.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
With DC/DC Converter Enabled:						
DC to 2 Mbps Data Rate:						Logic signal freq. ≤ 1 MHz
Setpoint	V _{ISO}	5.0		5.5	V	
Maximum Output Current	I _{ISO(max)}	10			mA	
Input Supply Current ²						
At Maximum Output Current	I _{DD(max)}			125	mA	I _{ISO} = 10 mA, Logic signal freq. ≤ 1 MHz
With No Output Current	I _{DD(0)}			95	mA	I _{ISO} = 0
10 Mbps Data Rate:						Logic signal freq. = 5 MHz
Setpoint	V _{ISO}	4.5		5.5	V	
Maximum Output Current	I _{ISO(max, 10)}					
ADuM5240		8.5			mA	
ADuM5241		7.0			mA	
ADum5242		5.7			mA	
Input Supply Current ³						
At Maximum Output Current	I _{DD(max)}			125	mA	I _{ISO(max, 10)} , Logic signal freq. = 5 MHz
With No Output Current	I _{DD(0)}			100	mA	I _{ISO} = 0, Logic signal freq. = 5 MHz
With DC/DC Converter Disabled:	100(0)					1.55 - 1, == 3.1 - 1.51 - 1.11 - 1.11
DC to 2 Mbps	I _{DD(2)}					Logic signal freq.≤1 MHz
Input Supply Current, V _{DD} ²	100(2)					Logic signal freq 1 Will iz
ADuM5240				3.3	mA	
ADuM5241				2.7	mA	
ADuM5241 ADuM5242				2.7	mA	
Input Supply Current, V _{ISO} ²				2.2	111/4	
				1.6	m 1	
ADuM5240				1.6	mA	
ADuM5241				3.1	mA	
ADum5242				2.5	mA	L Olaminaionalformation
10 Mbps	I _{DD(10)}					I _{ISO} =0, Logic signal freq.≤5 MHz
Input Supply Current, V _{DD} ²				- 4		
ADuM5240				6.1	mA	
ADuM5241				5.0	mA	
ADum5242				4.0	mA	
Input Supply Current, V _{ISO} ²						
ADuM5240				3.8	mA	
ADuM5241				5.0	mA	
ADuM5242				6.2	mA	
Enable Threshold ⁴	V _{ENABLE}			4.5	V	
Disable Threshold⁴	$V_{DISABLE}$	4.0		4.5	V	
Input Currents	I _{IA} , I _{IB}	-10	+0.01	+10	μΑ	
Logic High Input Threshold	V _{IH}			$0.7V_{ISO}$	V	
Logic Low Input Threshold	VIL	0.3 V _{ISO}			V	
Logic High Output Voltages	V _{OAH} , V _{OBH}	V_{DD} , -0.1	5.0		V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
	,	V _{DD} , – 0.5	4.8		V	$I_{0x} = -4 \text{ mA}, V_{lx} = V_{lxH}$
Logic Low Output Voltages	V _{OAL} , V _{OBL}		0.0	0.1	V	$I_{Ox} = 20 \mu A$, $V_{Ix} = V_{IxL}$
	- OAL) • OBL		0.0	0.4	v	1
			()()	0.4	1 V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$

Preliminary Technical Data

ADuM5240/ADuM5241/ADuM5242

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
AC SPECIFICATIONS						
Minimum Pulse Width⁵	PW			100	ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Maximum Data Rate ⁶		10			Mbps	$C_L = 15 \text{ pF, CMOS signal levels}$
Propagation Delay ⁷	t _{PHL} , t _{PLH}	25		70	ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Pulse-Width Distortion, $ t_{PLH} - t_{PHL} ^7$	PWD			3	ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Propagation Delay Skew ⁸	t _{PSK}			45	ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Channel-to-Channel Matching, Codirectional Channels ⁹	t _{PSKCD}			3	ns	C _L = 15 pF, CMOS signal levels
Channel-to-Channel Matching, Opposing-Directional Channels ¹⁰	t PSKCD			15	ns	C _L = 15 pF, CMOS signal levels
Ripple ¹¹			200		mV_{P-P}	
Enable Time ¹²	T _{ENABLE}		50		ns	
Disable Time ¹²	T _{DISABLE}		50		ns	
Output Rise/Fall Time (10% to 90%)	t _R /t _F		2.5		ns	$C_L = 15$ pF, CMOS signal levels
Common-Mode Transient Immunity at Logic High Output	[СМн]	25	35		kV/μs	$V_{Ix} = V_{DD}$, V_{ISO} , $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
Common-Mode Transient Immunity at Logic Low Output	CM _L	25	35		kV/μs	$V_{lx} = 0 \text{ V}, V = 1000 \text{ V},$ transient magnitude = 800 V
Refresh Frequency	f _r		1.0		MHz	

PACKAGE CHARACTERISTICS

Table 2.

Parameter	Symbol	Min Typ	Max	Unit	Test Conditions
Resistance (Input-Output)	R _{I-O}	10 ¹²		Ω	
Capacitance (Input-Output)	C _{I-O}	1.0		рF	f = 1 MHz
Input Capacitance	Cı	4.0		рF	
IC Junction-to-Air Thermal Resistance	θја	150		°C/W	

¹ All voltages are relative to their respective ground.

² Supply current values are specified with no load present on the digital outputs.

³ Supply current values are specified with no load present on the digital outputs.

⁴ Enable/disable threshold is the voltage at which the internal DC/DC converter is enabled/disabled.

⁵ The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.

⁶ The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.

⁷ t_{PHL} propagation delay is measured from the 50% level of the falling edge of the V_{Ix} signal to the 50% level of the falling edge of the V_{Ox} signal. t_{PLH} propagation delay is measured from the 50% level of the rising edge of the V_{Ix} signal to the 50% level of the V_{Ox} signal.

⁸ t_{PSK} is the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.

⁹ Channel-to-channel matching is the absolute value of the difference in propagation delays between the two channels when operated with identical loads.

¹⁰ Channel-to-channel matching is the absolute value of the difference in propagation delays between the two channels when operated with identical loads.

[&]quot;Ripple occurs at frequency corresponding to the input signal data rate or the refresh frequency for data rates below 1Mbps.

¹² Enable time is the duration from when input supply voltage rises above the enable threshold to when the internal DC/DC converter starts charging an external load.

Disable time is the duration from when the input supply voltage drops below the disable threshold to when the internal DC/DC converter stops charging an external load.

REGULATORY INFORMATION

The ADuM5240/5241/5242 will be approved by the following organizations upon product release:

UL (pending)	CSA (pending)	VDE (pending)
Recognized under 1577 Component Recognition Program ¹ Basic insulation, 2500 V rms isolation rating	Approved under CSA Component Acceptance Notice #5A Basic insulation per CSA 60950-1-03 and IEC 60950-1, 300 V rms (425 V peak) maximum working voltage	Certified according to DIN EN 60747-5-2 (VDE 0884 Part 2):2003-01 ² Basic insulation,300 V rms (425 V peak) maximum working voltage
File E214100	File 205078	File 2471900-4880-0001

 $^{^{1}}$ In accordance with UL1577, each ADuM524x is proof-tested by applying an insulation test voltage ≥ 3000 V rms for 1 second (current leakage detection limit = 5 μ A). 2 In accordance with DIN EN 60747-5-2, each ADuM524x is proof-tested by applying an insulation test voltage ≥ 1050 V peak for 1 second (partial discharge detection

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 4.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		2500	V rms	1 minute duration
Minimum External Air Gap (Clearance)	L(I01)	4.90 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(102)	4.01 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	СТІ	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

limit = 5 pC).

DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS

Table 5.

Description	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110			
For Rated Mains Voltage ≤ 150 V rms		I–IV	
For Rated Mains Voltage ≤ 300 V rms		I–III	
Climatic Classification		40/105/21	
Pollution Degree (DIN VDE 0110, Table 1)		2	
Maximum Working Insulation Voltage	VIORM	425	V peak
Input to Output Test Voltage, Method b1	V_{PR}	797	V peak
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test, $t_m = 1$ sec, Partial Discharge < 5 pC			
Input to Output Test Voltage, Method a	V_{PR}		
After Environmental Tests Subgroup 1			
$V_{IORM} \times 1.6 = V_{PR}$, $t_m = 60$ sec, Partial Discharge < 5 pC		680	V peak
After Input and/or Safety Test Subgroup 2/3			
$V_{IORM} \times 1.2 = V_{PR}$, $t_m = 60$ sec, Partial Discharge < 5 pC		510	V peak
Highest Allowable Overvoltage (Transient Overvoltage, t _{TR} = 10 sec)	V_{TR}	4000	V peak
Safety-Limiting Values (maximum value allowed in the event of a failure; also see the thermal derating curve, Figure 4)			
Case Temperature	Ts	150	°C
Side 1 Current	I _{S1}	160	mA
Side 2 Current	I _{S2}	170	mA
Insulation Resistance at T_s , $V_{10} = 500 \text{ V}$	Rs	>109	Ω

Note that the "*" marking on the package denotes DIN EN 60747-5-2 approval for a 425 V peak working voltage.

This isolator is suitable for basic isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits.

[Figure to be added]

Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN EN 60747-5-2

RECOMMENDED OPERATING CONDITIONS

Table 6.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A	-40	+105	°C
Supply Voltages ¹				
V _{DD} , DC/DC Conv. Enabled	V_{DD}	4.5	5.5	V
V _{DD} , DC/DC Conv. Disabled	V_{DD}	2.7	4.0	V
V _{ISO} , DC/DC Conv. Disabled	V _{ISO}	2.7	5.5	V
Input Signal Rise and Fall Times			1.0	ms
Input Supply Slew Rate			10	V/ms

¹ All voltages are relative to their respective ground.

ABSOLUTE MAXIMUM RATINGS

Ambient temperature = 25°C, unless otherwise noted.

Table 7.

Parameter	Symbol	Min	Max	Unit
Storage Temperature	T _{ST}	-55	150	°C
Ambient Operating Temperature	T _A	-40	105	°C
Supply Voltages ¹	V _{DD} , V _{ISO}	-0.5	7.0	V
Input Voltage ¹	V _{IA} , V _{IB}	-0.5	$V_{\text{DD/ISO}} + 0.5$	V
Output Voltage ¹	V _{OA} , V _{OB}	-0.5	$V_{\text{DD/ISO}} + 0.5$	V
Average Output Current, per Pin ²	Io			mA
Common-Mode Transients ³		-100	+100	kV/μs

¹ All voltages are relative to their respective ground.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; Functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table 8. Truth Table, ADuM5240

V _{DD} State	DC/DC Converter	V _{ISO} State	V _{IA} Input	V _{IB} Input	V _{OA} Output	V _{OB} Output
Powered	Enabled	Powered (Internally)	Н	Н	Н	Н
Powered	Enabled	Powered (Internally)	L	L	L	L
Powered	Enabled	Powered (Internally)	Н	L	Н	L
Powered	Enabled	Powered (Internally)	L	Н	L	Н
Powered	Disabled	Powered (Externally)	Н	Н	Н	Н
Powered	Disabled	Powered (Externally)	L	L	L	L
Powered	Disabled	Powered (Externally)	Н	L	Н	L
Powered	Disabled	Powered (Externally)	L	Н	L	Н
Powered	Disabled	Unpowered	Χ	Χ	Z	Z
Unpowered	Disabled	Powered (Externally)	X	Х	L	L
Unpowered	Disabled	Unpowered	Χ	Χ	Z	Z

² See Figure 4 for maximum rated current values for various temperatures.

³ Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Rating may cause latch-up or permanent damage.

Table 9. Truth Table, ADuM5241

V _{DD} State	DC/DC Converter	V _{ISO} State	V _{IA} Input	V _{IB}	V _{OA} Output	V _{OB} Output
Powered	Enabled	Powered (Internally)	Н	Н	Н	Н
Powered	Enabled	Powered (Internally)	L	L	L	L
Powered	Enabled	Powered (Internally)	Н	L	Н	L
Powered	Enabled	Powered (Internally)	L	Н	L	Н
Powered	Disabled	Powered (Externally)	Н	Н	Н	Н
Powered	Disabled	Powered (Externally)	L	L	L	L
Powered	Disabled	Powered (Externally)	Н	L	Н	L
Powered	Disabled	Powered (Externally)	L	Н	L	Н
Powered	Disabled	Unpowered	Χ	Х	L	Z
Unpowered	Disabled	Powered (Externally)	X	Х	Z	L
Unpowered	Disabled	Unpowered	Χ	Х	Z	Z

Table 10. Truth Table, ADuM5242

V _{DD} State	DC/DC Converter	V _{ISO} State	V _{IA} Input	V _{IB} Input	V _{OA} Output	V _{OB} Output
Powered	Enabled	Powered (Internally)	Н	Н	Н	Н
Powered	Enabled	Powered (Internally)	L	L	L	L
Powered	Enabled	Powered (Internally)	Н	L	Н	L
Powered	Enabled	Powered (Internally)	L	Н	L	Н
Powered	Disabled	Powered (Externally)	Н	Н	Н	Н
Powered	Disabled	Powered (Externally)	L	L	L	L
Powered	Disabled	Powered (Externally)	Н	L	Н	L
Powered	Disabled	Powered (Externally)	L	Н	L	Н
Powered	Disabled	Unpowered	Х	Χ	L	L
Unpowered	Disabled	Powered (Externally)	Х	Х	Z	Z
Unpowered	Disabled	Unpowered	Χ	Χ	Z	Z

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

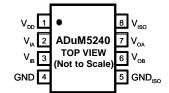


Figure 5. ADuM5240 Pin Configuration

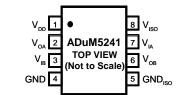


Figure 6. ADuM5241 Pin Configuration

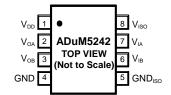


Figure 7. ADuM5242 Pin Configuration

Table 11. ADuM5240 Pin Function Descriptions

Pin No.	Mnemonic	Function
1	V _{DD1}	Supply Voltage for Isolator Side 1, 4.5 V to 5.5 V (DC/DC Enabled), 2.7 V to 4.0 V (DC/DC Disabled)
2	VIA	Logic Input A.
3	V _{IB}	Logic Input B.
4	GND	Ground. Ground reference for Isolator Side 1.
5	GND _{ISO}	Isolated Ground. Ground reference for Isolator Side 2.
6	V _{OB}	Logic Output B.
7	V _{OA}	Logic Output A.
8	V _{ISO}	Isolated Supply Voltage for Isolator Side 2, 5.0 V to 5.5 V Output (DC/DC Enabled), 4.5 V to 5.5 V Input (DC/DC Disabled)

Table 13. ADuM5242 Pin Function Descriptions
Pin

Pin No.	Mnemonic	Function
1	V _{DD1}	Supply Voltage for Isolator Side 1, 4.5 V to 5.5 V (DC/DC Enabled), 2.7 V to 4.0 V (DC/DC Disabled)
2	V _{OA}	Logic Output A.
3	V _{OB}	Logic Output B.
4	GND	Ground. Ground reference for Isolator Side 1.
5	GND _{ISO}	Isolated Ground. Ground reference for Isolator Side 2.
6	V _{IB}	Logic Input B.
7	VIA	Logic Input A.
8	V _{ISO}	Isolated Supply Voltage for Isolator Side 2, 5.0 V to 5.5 V Output (DC/DC Enabled), 4.5 V to 5.5 V Input (DC/DC Disabled)

Table 12. ADuM5241 Pin Function Descriptions

Pin No.	Mnemonic	Function
1	V _{DD1}	Supply Voltage for Isolator Side 1, 4.5 V to 5.5 V (DC/DC Enabled), 2.7 V to 4.0 V (DC/DC Disabled)
2	Voa	Logic Output A.
3	V _{IB}	Logic Input B.
4	GND	Ground. Ground reference for Isolator Side 1.
5	GND _{ISO}	Isolated Ground. Ground reference for Isolator Side 2.
6	V _{OB}	Logic Output B.
7	V _{IA}	Logic Input A.
8	V _{ISO}	Isolated Supply Voltage for Isolator Side 2, 5.0 V to 5.5 V Output (DC/DC Enabled), 4.5 V to 5.5 V Input (DC/DC Disabled)

APPLICATION INFORMATION

DC/DC CONVERTER

The ADuM524x can be operated with the internal DC/DC enabled or disabled. With the internal DC/DC converter enabled, the Pin 8 isolated supply provides output power as well as power to the part's isolated-side circuitry. Since the power consumed by the ADuM524x is a function of the input signals' data rate, the available isolated output power is determined by the data rate at which the part's data channels are operating.

The ADuM524x's internal DC/DC converter state is controlled by the input $V_{\rm DD}$ voltage as defined in Table 6. In normal operating mode, $V_{\rm DD}$ is set between 4.5 V and 5.5 V and the internal DC/DC converter is enabled. When/if it is desired to disable the DC/DC converter, $V_{\rm DD}$ is lowered to a value between 2.7 V and 4.0 V. In this mode, the $V_{\rm ISO}$ supply is supplied by the user and the ADuM524x's signal channels continue to operate normally.

GUIDELINES FOR PRE-PRODUCTION SAMPLES

Pre production samples meet all data sheet specifications; however, a limitation in the internal circuitry of the ADuM524x prevents proper start-up under all load conditions. This limitation will be corrected in the final product.

At certain temperature and load conditions the ADuM524x will not regulate its $V_{\rm ISO}$ output to the 5.25V target voltage at converter start-up. The output stabilizes at just under 4V with no external load or as low as 3V with an external load. If the converter starts successfully, the output voltage will continue to regulate properly even as temperature and load conditions change.

The start-up issue is affected by several circuit and environmental conditions: slew rate applied to $V_{\rm DD1}$, ambient temperature, and $V_{\rm ISO}$ capacitive load. The recommendations in the PC board layout section address the $V_{\rm DD1}$ slew rate dependence in most cases. Good results have been obtained when the system power supply slews at ${\sim}0.5 V/\mu S$. Faster slew rates can be tolerated but should be verified over temperature. Table 14 contains guidelines for the maximum reliable start-up temperature for two common values of load capacitance.

The $V_{\rm ISO}$ start-up issue is strongly temperature dependant. The ADuM542x dissipates between 40 and 63mW under normal operation, causing the internal temperature of the device to be higher than ambient during normal operation. A "warm start" after the device has reached its equilibrium temperature is the worst case condition and will give the highest probability of incorrect regulation of output voltage. The guidelines in Table 14 are based on "warm start" at full load. Cold start will be successful at higher ambient temperatures.

When these guidelines are followed, pre-production samples may be used for prototype and evaluation. As mentioned above this issue will be corrected in final silicon and the ADuM524x will operate at specified load and temperature conditions.

Table 14. Special Usage Conditions for Pre-production Devices

Max Temperature by Load Capacitance¹

	10nF	100nF
ADuM5240	105°C	Not Recommended
ADuM5241	105°C	65°C
ADuM5242	80°C	80°C

¹ Value of load capacitor C3 in Figure 8

PC BOARD LAYOUT

The ADuM524x digital isolators require no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins as shown in Figure 8. For the ADuM5240 and ADuM5241, a bypass capacitance (C_1) of 44 μF is required at the V_{DD} input to ensure proper power-up. For all models bypass capacitance is recommended with C_2 =0.1 μF on the non-isolated side and C_3 =10 nF on the isolated side. Due to high inductance associated with larger capacitors such as C_1 , it is recommended that both C_1 and C_2 be used on the ADuM5240 and ADuM5241. The bypass capacitors should be placed as close as possible to the ADuM524x device.

In cases where EMI is a concern, inductance should be added between the system supply and ground and the ADuM524x supply and ground as shown in Figure 8. Inductance can be added in the form of discrete inductors or ferrite beads, and it's recommended the value correspond to an impedance between 50Ω and 100Ω at approximately $300 \rm MHz$.

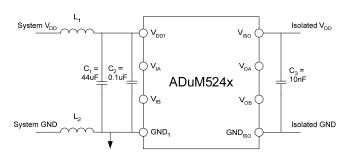
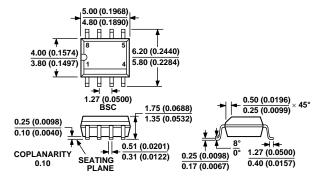



Figure 8. Recommended Application Circuit. C_1 may be omitted for ADuM5242, and L_1 and L_2 should be included where EMI is a concern.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 9. 8-Lead Standard Small Outline Package [SOIC]—Narrow Body (R-8)

Dimensions shown in millimeters (inches)

ORDERING GUIDE

Model	Number of Inputs, V _{DD1} Side	Number of Inputs, VDD2 Side	Maximum Data Rate (Mbps)	Temperature Range (°C)	Package Option ¹
ADuM5240BRZ ^{2,3}	2	0	10	-40 to +105	R-8
ADuM5241BRZ ^{2,3}	1	1	10	-40 to +105	R-8
ADuM5242BRZ ^{2, 3}	0	2	10	-40 to +105	R-8

¹ R-8 = 8-lead narrow body SOIC.

² Tape and reel are available. The addition of an "-RL7" suffix designates a 7" (1,000 units) tape and reel option.

 $^{^{3}}$ Z = Pb-free part.