

16V Auto-Zero, Rail-to-Rail Output, Precision Amplifiers

Preliminary Technical Data

FEATURES

Low Offset Voltage: 10 µV max. Offset Drift: 0.08 µV/°C Rail-to-Rail Output 16V Single or ±8V Dual Supply Operation High Gain and CMRR: 140dB High PSRR: 140 dB Very Low Input Bias Current: 100 pA Low Supply Current: 1.4 mA/amp

APPLICATIONS

Pressure and Position Sensors Strain Gage Amplifiers Medical Instrumentation Thermocouple Amplifiers Automotive Sensors Precision References Precision Current Sources

AD8638

GENERAL DESCRIPTION

The AD8638 is a wide bandwidth auto-zero amplifiers featuring rail-to-rail output swing while operating from 5 V to 16 V single supply or $\pm/-2.5$ V to \pm 8V dual supplies.

Using Analog Devices' new topology these zero-drift amplifiers combine low cost, with high accuracy and low noise. No external capacitors are required. In addition, the AD8638 family greatly reduces the digital switching noise often found in chopper-stabilized amplifiers.

With an offset voltage of 10 μ V, offset drift less than 0.08 μ V/°C and noise of only 1.5 μ Vp-p (0 Hz to 10 Hz), the AD8638 family is perfectly suited for applications where error sources must be minimized. Position and pressure sensors, thermocouple and thermopile detectors, and strain gage amplifiers benefit greatly from nearly zero drift over their operating temperature range.

The AD8638 family is specified for the extended industrial $(-40^{\circ} \text{ to } +125^{\circ}\text{C})$ temperature range. The AD8638 is available in SOT-23 and SOIC.

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ELECTRICAL CHARACTERISTICS (@ $V_s = 16V$, $V_{CM} = Vs/2$, $T_A = +25^{\circ}C$ unless otherwise specified.)

Parameter	Symbol	Conditions	A Grade			Units
			Min	Тур	Max	
INPUT CHARACTERISTICS						
Offset Voltage	V _{OS}	25°C -40°< T _A < +125°C		3	10 20	μV μV
Input Bias Current	I _B	$^{25^{\circ}C}$ -40°< T _A < +125°C		20	100 250	pA pA
Input Offset Current	I _{OS}	$-40^{\circ} < T_A < +125^{\circ}C$		40	80 150	pA pA
Input Voltage Range		$-40^{\circ} < T_A < +125^{\circ}C$	0		V _s - 2	v
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -5V$ to $+5V$	120	140		dB
-		$-40^{\circ} < T_{A} < +125^{\circ}C$	120	130		dB
Large Signal Voltage Gain (Note 1)	A _{VO}	$R_{L} = 10 \text{ k}\Omega, V_{O} = -5 \text{ to } +5 \text{ V}$	130	130		dB
		$-40^{\circ} < T_{A} < +125^{\circ}C$	115	130		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ} < T_A < +125^{\circ}C$		0.004	0.08	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 2 k\Omega$	15.8			V
		-40°C to +125°C		15.7		V
		$R_L = 10K\Omega$	15.9	15.95		V
		-40°C to +125°C		15.95		V
Output Voltage Low	V _{OL}	$R_L = 2 k\Omega$		100		mV
		-40°C to +125°C		170		mV
		$R_L = 10K\Omega$		30	50	mV
		-40°C to +125°C		70		mV
Short Circuit Limit	I _{SC}			±45		mA
		-40°C to +125°C		40		mA
Output Current	I _{OUT}			±30		mA
		-40°C to +125°C				mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{\rm S} = 5V$ to 16V	110	140		dB
		-40° C to $+125^{\circ}$ C		1.0	1.0	dB
Supply Current/Amplifier	I _{SY}	$V_0 = 0V$		1.0	1.2	mA
		$-40^{\circ} < T_{\rm A} < +125^{\circ} {\rm C}$			1.4	mA
DYNAMIC PERFORMANCE				_		
Slew Rate	SR	$R_L = 10 k\Omega$		2		V/μs
Overlay Recovery Time				50		μs
Gain Bandwidth Product	GBP			1.5		MHz
NOISE PERFORMANCE						
vonage Noise	e _{n p-p}	t=0.1 to 10 Hz		1.5		μV_{p-p}
voltage Noise Density	e _n	f=1kHz		59		nV/\Hz
Current Noise Density	i _n	f=10Hz		tbd		fA/√Hz

Note 1: Gain testing is highly dependent upon test bandwidth

ELECTRICAL CHARACTERISTICS (@ $V_S = 5V$, $V_{CM} = V_S/2$, $T_A = +25^{\circ}C$ unless otherwise specified.)

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
INPUT CHARACTERISTICS V_{OS} 3 10 μV Offset Voltage V_{OS} $-40^{\circ} < T_A < +125^{\circ}C$ 3 10 μV Input Bias Current I_B $-40^{\circ} < T_A < +125^{\circ}C$ 15 40 pA 120 pA
Offset Voltage V_{OS} $_{-40^{\circ} < T_A < +125^{\circ}C}$ 3 10 μV Input Bias Current I_B $_{-40^{\circ} < T_A < +125^{\circ}C}$ 15 40 pA PA $_{-40^{\circ} < T_A < +125^{\circ}C}$ 15 40 pA
Input Bias Current I_B I_B 15 40 pA pA $-40^{\circ} < T_A < +125^{\circ}C$ 120 pA
Input Offset Current I_{OS} $-40^{\circ} < T_A < +125^{\circ}C$ 30 40 pA pA pA
Input Voltage Range $-40^{\circ} < T_A < +125^{\circ}C$ 0 $V_S - 2$ V
Common-Mode Rejection Ratio CMRR $V_{CM} = -5V$ to $+5V$ 120 135 dB
$-40^{\circ} < T_{A} < +125^{\circ}C$ 120 130 dB
Large Signal Voltage Gain (Note 1) A_{VO} $R_L = 10 k\Omega, V_O = -5 \text{ to } +5V$ 130 140 dB
$-40^{\circ} < T_{A} < +125^{\circ}C$ 120 140 dB
Offset Voltage Drift $\Delta V_{OS}/\Delta T$ $-40^{\circ} < T_A < +125^{\circ}C$ 0.0040.08 $\mu V/^{\circ}C$
OUTPUT CHARACTERISTICS
Output Voltage High V_{OH} $R_L = 2 k\Omega$ 4.94.95V
-40° C to $+125^{\circ}$ C 4.9 V
$\mathbf{R}_{\mathrm{L}} = 10 \ \mathrm{k}\Omega \qquad \qquad 4.95 \qquad \qquad 4.99 \qquad \qquad \mathbf{V}$
-40° C to $+125^{\circ}$ C 4.99 V
Output Voltage Low V_{OL} $R_L = 2 k\Omega$ 25mV
-40° C to $+125^{\circ}$ C 40 mV
$\mathbf{R}_{\mathrm{L}} = 10 \ \mathrm{k}\Omega \qquad \qquad$
-40° C to $+125^{\circ}$ C 15 mV
Short Circuit Limit I _{SC} ±20 mA
-40° C to $+125^{\circ}$ C 15 mA
Output CurrentI±tbdmA
-40°C to +125°C mA
POWER SUPPLY Power Supply Dejection Datio DSDD V = 5V to 16V 110 140 dD
Power Supply Rejection Ratio $PSRR$ $v_S = 5 v$ to $16 v$ 110 140 dB
Supply Current/Amplifier $U_{ac} = 0V$ 0.9 1 mA
Suppry current Amplifier 1_{SY} $v_0 = 0$ $v_0 = 0$ 0.7 1 mA
Slew Rate $SR = 10 \text{ k}\Omega$ 2 V/us
Overlay Recovery Time 50 us
Gain Bandwidth Product GBP 1.3 MHz
NOISE PERFORMANCE
Voltage Noise $e_{n p-p}$ f=0.1 to 10 Hz 1.5 $\mu V_{n p}$
Voltage Noise Density e_n $f=1kHz$ 59 nV/\sqrt{Hz}
Current Noise Density i_n $f=10Hz$ tbd fA/\sqrt{Hz}

Note 1: Gain testing is highly dependent upon test bandwidth

ABSOLUTE MAXIMUM RATINGS¹

Supply voltage+16V
Input Voltage±Vs
Differential Input Voltage ¹ ±Vs
Output Short-Circuit Duration to Gnd Indefinite
Storage Temperature Range
R, RM, RU Packages65°C to +150°C
Operating Temperature Range
AD863840°C to +125°C
Junction Temperature Range
R, RT Packages65°C to +150°C
Lead Temperature Range (Soldering, 60 Sec)+300°C

Package Type	θJA^2	θJC	Units
5-Lead SOT-23 (RT-5)	230	146	°C/W
8-Pin SOIC (R)	158	43	°C/W

NOTES

 1 Differential input voltage is limited to $\pm 5V$ or the supply voltage whichever is less.

 2 θ_{JA} is specified for the worst case conditions, i.e., θ_{JA} is specified for device soldered in circuit board for surface mount packages.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8638ARJZ	-40°C to +125°C	5-Lead SOT-23	RJ-5
AD8638ARZ	-40°C to +125°C	8-Lead SOIC_N	R-8

www.analog.com

Rev. PrA | Page 4 of 4