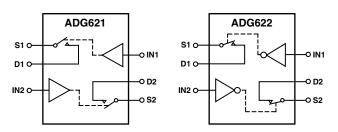
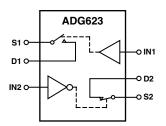


CMOS ± 5 V/5 V 4 Ω Dual SPST Switches

ADG621/ADG622/ADG623


FEATURES


5.5 Ω (Max) On Resistance 0.9 Ω (Max) On-Resistance Flatness 2.7 V to 5.5 V Single Supply ± 2.7 V to ± 5.5 V Dual Supply Rail-to-Rail Operation 10-Lead μ SOIC Package Typical Power Consumption (<0.01 μ W) TTL/CMOS Compatible Inputs

APPLICATIONS

Automatic Test Equipment Power Routing Communication Systems Data Acquisition Systems Sample and Hold Systems Avionics Relay Replacement Battery-Powered Systems

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC "0" INPUT

GENERAL DESCRIPTION

The ADG621, ADG622, and the ADG623 are monolithic, CMOS SPST (single-pole, single-throw) switches. Each switch of the ADG621, ADG622, and ADG623 conducts equally well in both directions when on.

The ADG621/ADG622/ADG623 contain two independent switches. The ADG621 and ADG622 differ only in that both switches are normally open and normally closed respectively. In the ADG623, Switch 1 is normally open and Switch 2 is normally closed. The ADG623 exhibits break-before-make switching action.

The ADG621/ADG622/ADG623 offers low on-resistance of 4 Ω , which is matched to within 0.25 Ω between channels. These switches also provide low power dissipation yet gives high switching speeds. The ADG621, ADG622, and ADG623 are available in a 10-lead μ SOIC package.

PRODUCT HIGHLIGHTS

- 1. Low On Resistance (R_{ON}) (4 Ω typ)
- 2. Dual ± 2.7 V to ± 5.5 V or Single 2.7 V to 5.5 V
- Low Power Dissipation. CMOS construction ensures low power dissipation.
- 4. Tiny 10-Lead μSOIC Package

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADG621/ADG622/ADG623—SPECIFICATIONS

 $\textbf{DUAL SUPPLY}^{1} \quad (\textbf{V}_{DD} = +5 \ \textbf{V} \ \pm \ 10\%, \ \textbf{V}_{SS} = -5 \ \textbf{V} \ \pm \ 10\%, \ \textbf{GND} = 0 \ \textbf{V}. \ \textbf{All specifications} \ -40^{\circ} \textbf{C} \ \text{to} \ +85^{\circ} \textbf{C} \ \text{unless otherwise noted.})$

	B Version			
		−40°C to		
Parameter	+25°C	+85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$ m V_{SS}$ to $ m V_{DD}$	V	
				$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance (R _{ON})	4		Ω typ	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA},$
	5.5	7	Ω max	Test Circuit 1
On Resistance Match Between				
Channels (ΔR_{ON})	0.25		Ω typ	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA}$
	0.35	0.4	Ω max	
On-Resistance Flatness $(R_{FLAT(ON)})$	0.9	0.9	Ω typ	$V_S = \pm 3.3 \text{ V}, I_S = -10 \text{ mA}$
		1.5	Ω max	
LEAKAGE CURRENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V},$
	±0.25	±1	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	± 0.01		nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V},$
	±0.25	± 1	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_S = V_D = \pm 4.5 \text{ V}$, Test Circuit 3
	±0.25	±1	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.1	μA max	
C _{IN} , Digital Input Capacitance	2		pF typ	
DYNAMIC CHARACTERISTICS ²				
t_{ON}	75		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
011	120	155	ns max	$V_S = 3.3 \text{ V}$, Test Circuit 4
t_{OFF}	45		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	70	85	ns max	$V_S = 3.3 \text{ V}$, Test Circuit 4
Break-Before-Make Time Delay, t _{BBM}	30		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$,
(ADG623 Only)		10	ns min	$V_{S1} = V_{S2} = 3.3 \text{ V, Test Circuit 5}$
Charge Injection	110		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF},$
				Test Circuit 7
Off Isolation	-65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,
				Test Circuit 8
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,
D 1 141 2 1D	220		NATT .	Test Circuit 10
Bandwidth –3 dB	230		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C _S (OFF)	20		pF typ	f = 1 MHz f = 1 MHz
C_D (OFF) C_D , C_S (ON)	20 70		pF typ pF typ	f = 1 MHz f = 1 MHz
	10		hr. ràh	
POWER REQUIREMENTS			_	$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
$ m I_{DD}$	0.001		μA typ	Digital Inputs = 0 V or 5.5 V
•		1.0	μA max	D
I_{SS}	0.001	1.0	μA typ	Digital Inputs = 0 V or 5.5 V
		1.0	μA max	

NOTES ¹Temperature ranges are as follows: B Version, -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

 $\textbf{SINGLE SUPPLY}^{1} \quad (\textbf{V}_{DD} = +5 \ \textbf{V} \ \pm \ 10\%, \ \textbf{V}_{SS} = 0 \ \textbf{V}, \ \textbf{GND} = \ 0 \ \textbf{V}. \ \textbf{All specifications} \ -40^{\circ} \textbf{C} \ to \ +85^{\circ} \textbf{C} \ unless \ otherwise \ noted.)$

	B Version				
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments	
	123 0	. 05 0	Cint	Test conditions, comments	
ANALOG SWITCH		O V to V	V		
Analog Signal Range		0 V to V_{DD}	V	$V_{DD} = 4.5 \text{ V}, V_{SS} = 0 \text{ V}$	
On Resistance (R _{ON})	7		O tren	$V_{DD} = 4.5 \text{ V}, V_{SS} = 0 \text{ V}$ $V_{S} = 0 \text{ V to } 4.5 \text{ V}, I_{S} = -10 \text{ mA},$	
On Resistance (R _{ON})	10	12.5	Ω typ Ω max	$V_S = 0$ V to 4.5 V, $I_S = -10$ mA, Test Circuit 1	
On Resistance Match Between	10	12.5	22 IIIax	Test Circuit 1	
Channels (ΔR_{ON})	0.5		Ω typ	$V_S = 0 \text{ V to } 4.5 \text{ V}, I_S = -10 \text{ mA}$	
Charmers (MRON)	0.75	1	Ω max	VS = 0 V to 4.5 V, IS = -10 IIIA	
On-Resistance Flatness (R _{FLAT(ON)})	0.75	0.5	Ω typ	$V_S = 1.5 \text{ V to } 3.3 \text{ V}, I_S = -10 \text{ mA}$	
On-Resistance Flatness (NFLAT(ON))	0.5	1	Ω max	vg = 1.5 v to 5.5 v, 1g = -10 mm	
		1	32 IIIdx		
LEAKAGE CURRENTS				$V_{\rm DD} = 5.5 \text{ V}$	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 1 V/4.5 V, V_D = 4.5 V/1 V,$	
D : 000 1 1 7 (000)	±0.25	±1	nA max	Test Circuit 2	
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V},$	
	±0.25	±1	nA max	Test Circuit 2	
Channel ON Leakage I_D , I_S (ON)	±0.01		nA typ	$V_S = V_D = 1 \text{ V}/4.5 \text{ V},$	
	±0.25	±1	nA max	Test Circuit 3	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current					
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		± 0.1	μA max		
C _{IN} , Digital Input Capacitance	2		pF typ		
DYNAMIC CHARACTERISTICS ²					
t_{ON}	120		ns typ	$R_L = 300 \Omega, C_L = 35 pF$	
	210	260	ns max	$V_S = 3.3 \text{ V}$, Test Circuit 4	
$t_{ m OFF}$	50		ns typ	$R_L = 300 \Omega, C_L = 35 \mathrm{pF}$	
	75	100	ns max	$V_S = 3.3 \text{ V}$, Test Circuit 4	
Break-Before-Make Time Delay, t _{BBM}	70		ns typ	$R_L = 300 \Omega, C_L = 35 \mathrm{pF},$	
(ADG623 Only)		10	ns min	$V_{S1} = V_{S2} = 3.3 \text{ V, Test Circuit 5}$	
Charge Injection	6		pC typ	$V_S = 0 V; R_S = 0 \Omega, C_L = 1 nF,$	
				Test Circuit 6	
Off Isolation	-65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,	
				Test Circuit 7	
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz,$	
				Test Circuit 9	
Bandwidth –3 dB	230		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 8	
$C_S(OFF)$	20		pF typ	f = 1 MHz	
C_{D} (OFF)	20		pF typ	f = 1 MHz	
C_D , C_S (ON)	70		pF typ	f = 1 MHz	
POWER REQUIREMENTS				V _{DD} = 5.5 V	
$I_{ m DD}$	0.001		μA typ	Digital Inputs = 0 V or 5.5 V	
==		1.0	μA max		

-3-REV. 0

NOTES

¹Temperature ranges are as follows: B Version, -40°C to +85°C.
²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

NOTES

IR Reflow, Peak Temperature220°C

Table I. Truth Table for the ADG621/ADG622

ADG621 INx	ADG622 INx	Switch x Condition
0	1	OFF
1	0	ON

Table II. Truth Table for the ADG623

IN1	IN2	Switch S1	Switch S2
0	0	OFF	ON
0	1	OFF	OFF
1	0	ON	ON
1	1	ON	OFF

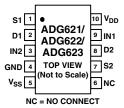
ORDERING GUIDE

Model Option	Temperature Range	Description	Package	Branding Information*
ADG621BRM	-40°C to +85°C	μSOIC (microSmall Outline IC)	RM-10	SXB
ADG622BRM	-40°C to +85°C	μSOIC (microSmall Outline IC)	RM-10	SYB
ADG623BRM	-40°C to +85°C	μSOIC (microSmall Outline IC)	RM-10	SZB

^{*}Branding on µSOIC packages is limited to three characters due to space constraints.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG621/ADG622/ADG623 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

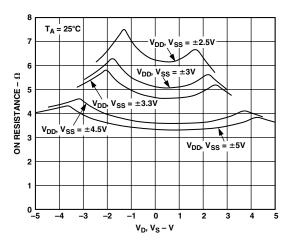

-4- REV. 0

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

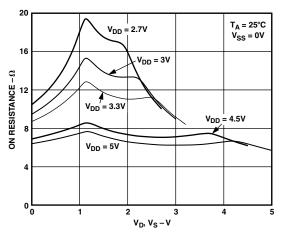
²Overvoltages at IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATION

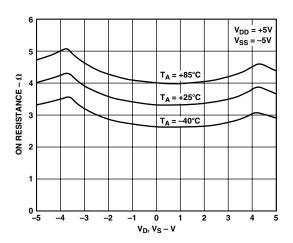
10-Lead μSOIC (RM-10)

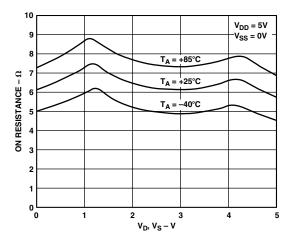


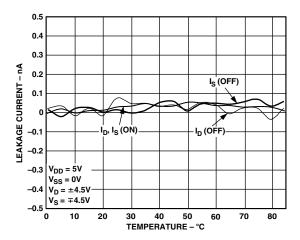
TERMINOLOGY

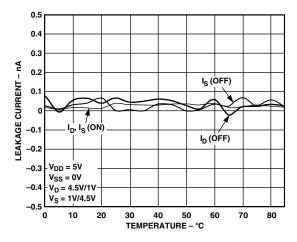

V_{DD}	Most Positive Power Supply Potential.
V_{SS}	Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground at the device.
GND	Ground (0 V) Reference
I_{DD}	Positive Supply Current
I_{SS}	Negative Supply Current
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input
R_{ON}	Ohmic resistance between D and S.
$\Delta R_{ m ON}$	On resistance match between any two Channels i.e., $R_{\rm ON}$ max – $R_{\rm ON}$ min.
$R_{FLAT(ON)}$	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
I _S (OFF)	Source Leakage Current with the switch "OFF."
I_D (OFF)	Drain Leakage Current with the switch "OFF."
$I_D, I_S (ON)$	Channel Leakage Current with the switch "ON."
$V_{D}\left(V_{S}\right)$	Analog Voltage on Terminals D, S.
V_{INL}	Maximum Input Voltage for Logic "0."
V_{INH}	Minimum Input Voltage for Logic "1."
$I_{\rm INL}(I_{\rm INH})$	Input Current of the Digital Input
C_S (OFF)	"OFF" Switch Source Capacitance
C_D (OFF)	"OFF" Switch Drain Capacitance
$C_D, C_S (ON)$	"ON" Switch Capacitance
t_{ON}	Delay between applying the digital control input and the output switching on.
$t_{ m OFF}$	Delay between applying the digital control input and the output switching off.
$t_{ m BBM}$	"OFF" time or "ON" time measured between the 90% points of both switches, when switching from one address state to another.
Charge Injection	A measure of the Glitch Impulse transfered from the Digital input to the Analog output during switching.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Bandwidth	The frequency response of the "ON" switch.
Insertion Loss	The loss due to the ON resistance of the Switch.

REV. 0 -5-

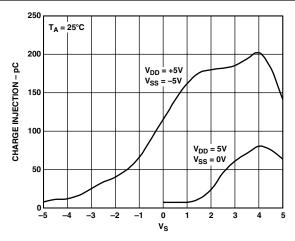

ADG621/ADG622/ADG623—Typical Performance Characteristics


TPC 1. On Resistance vs. V_D (V_S). (Dual Supply)

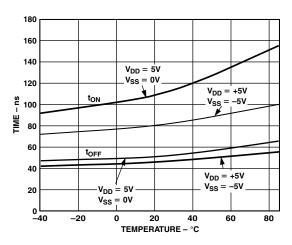

TPC 2. On Resistance vs. V_D (V_S). (Single Supply)


TPC 3. On Resistance vs. V_D (V_S) for Different Temperatures. (Dual Supply)

TPC 4. On Resistance vs. V_D (V_S) for Different Temperature. (Single Supply)

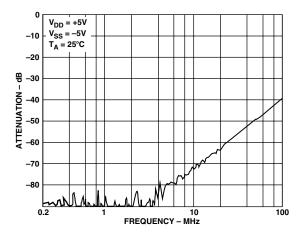


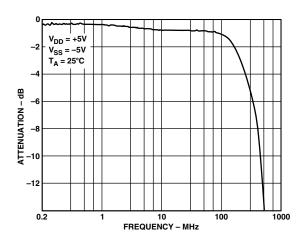
TPC 5. Leakage Currents vs. Temperature. (Dual Supply)



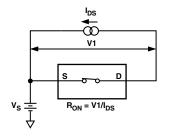
TPC 6. Leakage Currents vs. Temperature. (Single Supply)

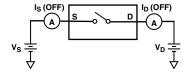

-6- REV. 0

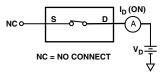

TPC 7. Charge Injection vs. Source Voltage


TPC 8. t_{ON}/t_{OFF} Times vs. Temperature

TPC 9. OFF Isolation vs. Frequency

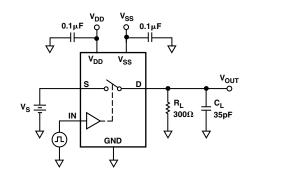

TPC 10. Crosstalk vs. Frequency

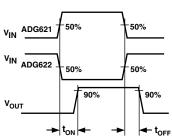



TPC 11. On Response vs. Frequency

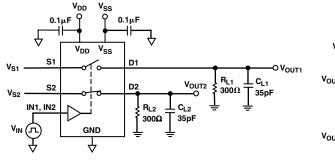
REV. 0 -7-

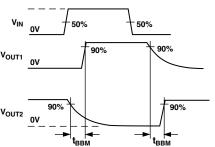
Test Circuits

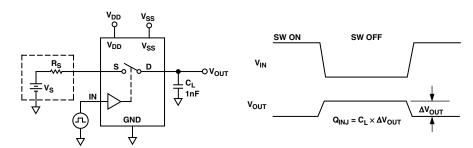




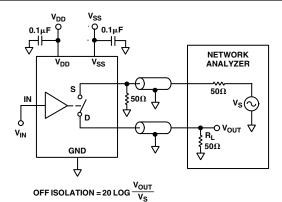
Test Ciruit 1. On Resistance


Test Ciruit 2. Off Leakage

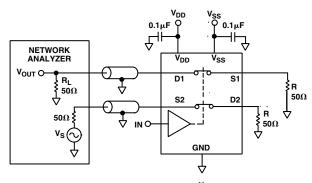

Test Ciruit 3. On Leakage



Test Ciruit 4. Switching Times

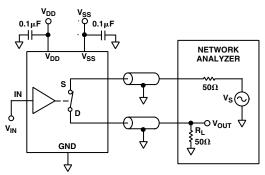


Test Ciruit 5. Break-Before-Make Time Delay, t_{BBM} (ADG623 Only)



Test Ciruit 6. Charge Injection

-8- REV. 0

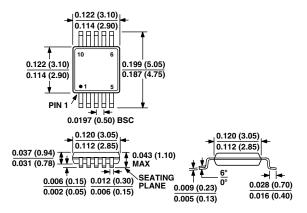


Test Ciruit 7. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK = 20 LOG $\frac{V_{OUT}}{V_S}$

Test Ciruit 8. Channel-to-Channel Crosstalk

 $INSERTION \ LOSS = 20 \ LOG \ \ \frac{V_{OUT} \ WITH \ SWITCH}{V_{OUT} \ WITHOUT \ SWITCH}$


Test Ciruit 9. Bandwidth

REV. 0 –9–

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

10-Lead µSOIC Package (RM-10)

-10- REV. 0