

CMOS Low Voltage 2 Ω SPST Switches

ADG701/ADG702

FEATURES

1.8 V to 5.5 V single supply 2 Ω (typ) on resistance Low on-resistance flatness -3 dB bandwidth > 200 MHz **Rail-to-rail operation** Fast switching times:

ton 18 ns toff 12 ns

Typical power consumption $< 0.01 \mu W$ TTL/CMOS compatible

APPLICATIONS

Battery powered systems Communication systems Sample hold systems **Audio signal routing** Video switching Mechanical reed relay replacement

GENERAL DESCRIPTION

The ADG701/ADG702 are monolithic CMOS SPST switches. These switches are designed on an advanced submicron process that provides low power dissipation yet high switching speed, low on resistance, and low leakage currents. In addition, -3 dB bandwidths of greater than 200 MHz can be achieved.

The ADG701/ADG702 can operate from a single 1.8 V to 5.5 V supply, making it ideal for use in battery-powered instruments and with the new generation of DACs and ADCs from Analog

Figure 1 shows that with a logic input of 1, the switch of the ADG701 is closed, while that of the ADG702 is open. Each switch conducts equally well in both directions when on.

The ADG701/ADG702 are available in 5-lead SOT-23, 6-lead SOT-23, and 8-lead MSOP packages.

FUNCTIONAL BLOCK DIAGRAM

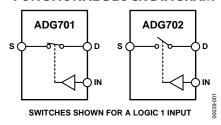


Figure 1.

PRODUCT HIGHLIGHTS

- 1. 1.8 V to 5.5 V single-supply operation. The ADG701/ ADG702 offer high performance, including low on resistance and fast switching times, and are fully specified and guaranteed with 3 V and 5 V supply rails.
- Very low R_{ON} (3 Ω max at 5 V, 5 Ω max at 3 V). At 1.8 V operation, R_{ON} is typically 40 Ω over the temperature range.
- On resistance flatness $R_{FLAT(ON)}$ (1 Ω max).
- -3 dB bandwidth > 200 MHz.
- Low power dissipation. CMOS construction ensures low power dissipation.
- Fast ton/toff.
- Tiny 5-lead SOT-23, 6-lead SOT-23, and 8-lead MSOP packages.

TABLE OF CONTENTS

Specifications	3
Absolute Maximum Ratings	5
ESD Caution	5
Pin Configurations and Function Descriptions	6
Typical Performance Characteristics	7
Test Circuits	8

Applications Information	9
ADG701/ADG702 Supply Voltages	9
On Response vs. Frequency	9
Off Isolation	9
Outline Dimensions	10
Ordering Guide	11

REVISION HISTORY

6/04—Data Sheet Changed from Rev. A to Rev. B

Updated Format	Universal
Added 5-Lead SOT-23 Package	Universal
Updated Outline Dimensions	10
Changes to Ordering Guide	11

8/98—Data Sheet Changed from Rev. 0 to Rev. A

SPECIFICATIONS

 V_{DD} = 5 V \pm 10%, GND = 0 V. Temperature range for B version is -40° C to $+85^{\circ}$ C, unless otherwise noted.

Table 1.

		B Version		
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0 V to V_{DD}$	V	
On Resistance (RoN)	2		Ω typ	$V_S = 0 \text{ V to } V_{DD}$, $I_S = -10 \text{ mA}$; Figure 11
	3	4	Ω max	
On-Resistance Flatness (RFLAT(ON))	0.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
		1.0	Ω max	
LEAKAGE CURRENTS				$V_{DD} = 5.5 \text{ V}$
Source OFF Leakage, Is (OFF)	±0.01		nA typ	$V_S = 4.5 \text{ V}/1 \text{ V}, V_D = 1 \text{ V}/4.5 \text{ V}$; Figure 12
	±0.25	±0.35	nA max	
Drain OFF Leakage, I _D (OFF)	±0.01		nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V};$ Figure 12
	±0.25	±0.35	nA max	
Channel ON Leakage, ID, Is (ON)	±0.01		nA typ	$V_S = V_D = 1 \text{ V, or 4.5 V; Figure 13}$
	±0.25	±0.35	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
l _{INL} or l _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.1	μA max	
DYNAMIC CHARACTERISTICS ¹				
t _{ON}	12		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		18	ns max	V _S = 3 V; Figure 14
t_{OFF}	8		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		12	ns max	V _S = 3 V; Figure 14
Charge Injection	5		pC typ	$V_S = 2 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; Figure 15
Off Isolation	-55		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-75		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 16
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 17
C _s (OFF)	17		pF typ	
C _D (OFF)	17		pF typ	
C _D , C _s (ON)	38		pF typ	
POWER REQUIREMENTS				$V_{DD} = 5.5 \text{ V}$
				Digital inputs = 0 V or 5 V
I _{DD}	0.001		μA typ	
		1.0	μA max	

 $^{^{\}rm 1}$ Guaranteed by design, not subject to production test.

 $V_{DD} = 3 \text{ V} \pm 10\%$, GND = 0 V. Temperature range for B version is -40°C to $+85^{\circ}\text{C}$, unless otherwise noted.

Table 2.

	B Version		
+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
	$0\ V\ to\ V_{DD}$	V	
3.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}; Figure 11$
5	6	Ω max	
1.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
			V _{DD} = 3.3 V
±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V}; Figure 12$
±0.25	±0.35	nA max	
±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V}; \text{ Figure 12}$
±0.25	±0.35	nA max	
±0.01		nA typ	$V = V_D = 1 V$, or 3 V; Figure 13
±0.25	±0.35	nA max	
	2.0	V min	
	0.4	V max	
0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
	±0.1	μA max	
14		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	20	ns max	$V_S = 2 V$, Figure 14
8		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	13	ns max	$V_S = 2 V$, Figure 14
4		pC typ	$V_S=1.5~V,~RS=0~\Omega$, $C_L=1~nF;$ Figure 15
-55		dB tvp	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
		1 .	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 16
		az 1,7 p	112 30 127 52 3 p. 7. 1
200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 17
17		pF typ	
		F. 9P	V _{DD} = 3.3 V
			Digital Inputs = 0 V or 3 V
0.001		uA typ	Signal inputs = 0 v or 5 v
0.001	1.0	μA max	
	3.5 5 1.5 ±0.01 ±0.25 ±0.01 ±0.25 ±0.01 ±0.25 	+25°C -40°C to +85°C 0 V to V _{DD} 3.5 5 6 1.5 ±0.01 ±0.25 ±0.35 ±0.01 ±0.25 ±0.35 2.0 0.4 0.005 2.0 8 13 4 -55 -75 200 17 17 38	+25°C -40°C to +85°C Unit

 $^{^{\}scriptscriptstyle 1}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = +25$ °C, unless otherwise noted.

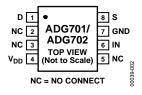
Table 3.

ParameterRatingVDD to GND-0.3 V to +7 VAnalog, Digital Inputs¹-0.3 V to VDD +0.3 VOr 30 mA, whichever occurs firstor 30 mA, whichever occurs firstContinuous Current, S or D30 mAPeak Current, S or D100 mA, pulsed at 1 ms, 10% duty cycle maxOperating Temperature Range-40°C to +85°CIndustrial (B Version)-40°C to +85°CStorage Temperature Range-65°C to +150°CJunction Temperature150°CMSOP Package, Power Dissipation315 mWθJA Thermal Impedance206°C/WΘJC Thermal Impedance44°C/WSOT-23 Package, Power Dissipation282 mWΘJA Thermal Impedance229.6°C/WΘJC Thermal Impedance91.99°C/WLead Temperature, SolderingVapor Phase (60 sec)215°CInfrared (15 sec)220°CESD2 kV	Table 5.	
Analog, Digital Inputs¹ On 3 V to VDD +0.3 V or 30 mA, whichever occurs first Continuous Current, S or D Peak Current, S or D Peak Current, S or D Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature MSOP Package, Power Dissipation Oha Thermal Impedance Oha Thermal I	Parameter	Rating
or 30 mA, whichever occurs first Continuous Current, S or D Peak Current, S or D Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature MSOP Package, Power Dissipation θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance	V _{DD} to GND	−0.3 V to +7 V
Peak Current, S or D Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature MSOP Package, Power Dissipation θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance	Analog, Digital Inputs ¹	or 30 mA, whichever
Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature MSOP Package, Power Dissipation θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance	Continuous Current, S or D	30 mA
Industrial (B Version) Storage Temperature Range Junction Temperature MSOP Package, Power Dissipation ∂ _{JA} Thermal Impedance ∂ _{JC} Thermal Impedance SOT-23 Package, Power Dissipation ∂ _{JA} Thermal Impedance Joc Thermal Impedance ∂ _{JC} Thermal Impedance Joc Therma	Peak Current, S or D	
Storage Temperature Range Junction Temperature MSOP Package, Power Dissipation ∂JA Thermal Impedance ∂JC Thermal Impedance SOT-23 Package, Power Dissipation ∂JA Thermal Impedance JOC Thermal Impedance ∂JC Thermal Impedance ∂JC Thermal Impedance ∂JC Thermal Impedance JOC Thermal Impedan	Operating Temperature Range	
Junction Temperature MSOP Package, Power Dissipation θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance SOT-23 Package, Power Dissipation θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) 150°C 315 mW 206°C/W 282 mW 91.99°C/W 215°C 220°C	Industrial (B Version)	−40°C to +85°C
MSOP Package, Power Dissipation θ _{JA} Thermal Impedance θ _{JC} Thermal Impedance SOT-23 Package, Power Dissipation θ _{JA} Thermal Impedance θ _{JC} Thermal Impedance θ _{JC} Thermal Impedance θ _{JC} Thermal Impedance 129.6°C/W 91.99°C/W Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) 215°C 220°C	Storage Temperature Range	−65°C to +150°C
θ _{JA} Thermal Impedance206°C/Wθ _{JC} Thermal Impedance44°C/WSOT-23 Package, Power Dissipation282 mWθ _{JA} Thermal Impedance229.6°C/Wθ _{JC} Thermal Impedance91.99°C/WLead Temperature, Soldering215°CInfrared (15 sec)220°C	Junction Temperature	150°C
θ _{JC} Thermal Impedance44°C/WSOT-23 Package, Power Dissipation282 mWθ _{JA} Thermal Impedance229.6°C/Wθ _{JC} Thermal Impedance91.99°C/WLead Temperature, SolderingVapor Phase (60 sec)215°CInfrared (15 sec)220°C	MSOP Package, Power Dissipation	315 mW
SOT-23 Package, Power Dissipation θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) 282 mW 229.6°C/W 91.99°C/W 215°C 220°C	θ_{JA} Thermal Impedance	206°C/W
θJA Thermal Impedance229.6°C/WθJC Thermal Impedance91.99°C/WLead Temperature, Soldering215°CVapor Phase (60 sec)215°CInfrared (15 sec)220°C	θ_{JC} Thermal Impedance	44°C/W
θ _{JC} Thermal Impedance 91.99°C/W Lead Temperature, Soldering Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C	SOT-23 Package, Power Dissipation	282 mW
Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) 215°C 220°C	θ_{JA} Thermal Impedance	229.6°C/W
Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C	θ_{JC} Thermal Impedance	91.99°C/W
Infrared (15 sec) 220°C	Lead Temperature, Soldering	
	Vapor Phase (60 sec)	215°C
ESD 2 kV	Infrared (15 sec)	220°C
	ESD	2 kV

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 4. Truth Table

ADG701 In	ADG702 In	Switch Condition
0	1	OFF
_1	0	ON


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

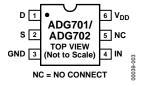


Figure 2. 8-Lead MSOP

Figure 3. 6-Lead SOT-23

Figure 4. 5-Lead SOT-23

Table 5. Pin Descriptions

Term	Description
V _{DD}	Most positive power supply potential.
GND	Ground (0 V) Reference.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input.
R _{ON}	Ohmic resistance between D and S.
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured
	over the specified analog signal range.
Is (OFF)	Source Leakage Current with the Switch OFF.
I _D (OFF)	Drain Leakage Current with the Switch OFF.
ID, Is (ON)	Channel Leakage Current with the Switch ON.
V_D (VS)	Analog Voltage on Terminals D and S.
Cs (OFF)	OFF Switch Source Capacitance.
C _D (OFF)	OFF Switch Drain Capacitance.
C_D , C_S (ON)	ON Switch Capacitance.
ton	Delay between applying the digital control input and the output switching on. See Figure 14.
toff	Delay between applying the digital control input and the output switching off.
Off Isolation	A measure of unwanted signal coupling through an OFF switch.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Bandwidth	The frequency at which the output is attenuated by -3 dBs.
On Response	The frequency response of the ON switch.
On Loss	The voltage drop across the ON switch seen in Figure 10 as the number of dBs the signal is from 0 dB at very low frequencies.

TYPICAL PERFORMANCE CHARACTERISTICS

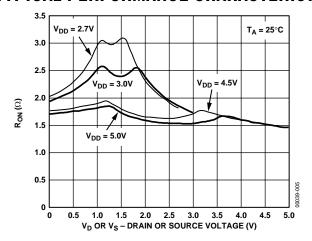


Figure 5. On Resistance as a Function of V_D (V_S) Single Supplies

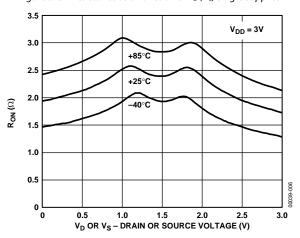


Figure 6. On Resistance as a Function of V_D (V_S) for Different Temperatures V_{DD} = 3 V

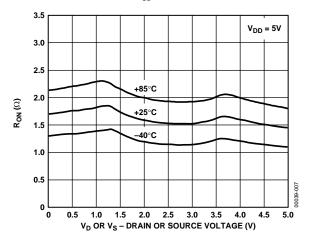


Figure 7. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 5 \text{ V}$

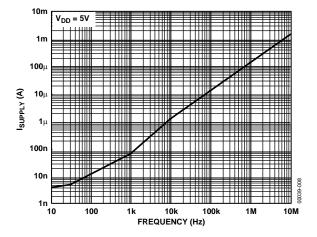


Figure 8. Supply Current vs. Input Switching Frequency

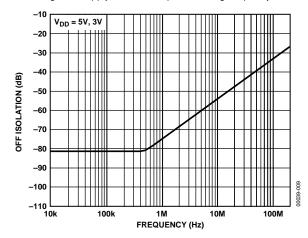


Figure 9. Off Isolation vs. Frequency

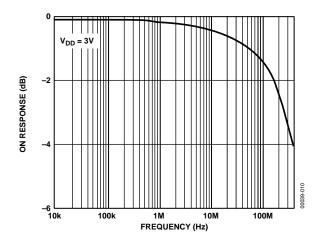
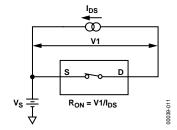
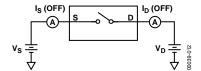




Figure 10. On Response vs. Frequency

TEST CIRCUITS

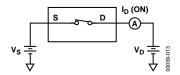


Figure 11. On Resistance

Figure 12. Off Leakage

Figure 13. On Leakage

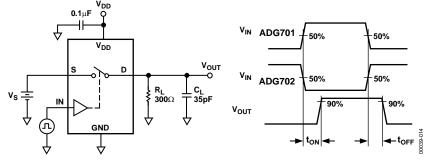


Figure 14. Switching Times

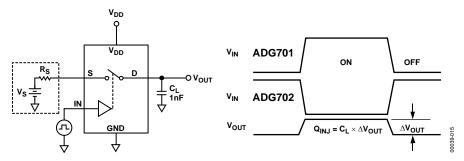


Figure 15. Charge Injection

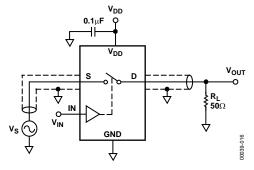


Figure 16. Off Isolation

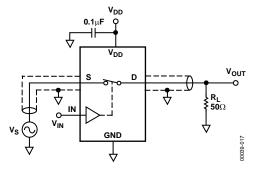


Figure 17. Bandwidth

APPLICATIONS INFORMATION

The ADG701/ADG702 belong to Analog Devices' new family of CMOS switches. This series of general-purpose switches have improved switching times, lower on resistance, higher bandwidth, low power consumption, and low leakage currents.

ADG701/ADG702 SUPPLY VOLTAGES

Functionality of the ADG701/ADG702 extends from 1.8 V to 5.5 V single supply, making the parts ideal for battery-powered instruments, where power efficiency and performance are important design parameters.

It is important to note that the supply voltage affects the input signal range, the on resistance, and the switching times of the part. The effects of the power supplies can be clearly seen in the Typical Performance Characteristics and the Specifications sections.

For V_{DD} = 1.8 V operation, R_{ON} is typically 40 Ω over the temperature range.

ON RESPONSE VS. FREQUENCY

Figure 18 illustrates the parasitic components that affect the ac performance of CMOS switches (a box surrounds the switch). Additional external capacitances further degrade some performance. These capacitances affect feedthrough, crosstalk, and system bandwidth.

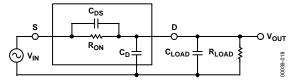


Figure 18. Switch Represented by Equivalent Parasitic Components

The transfer function that describes the equivalent diagram of the switch (Figure 18) is of the form (A)s shown below.

$$A(s) = R_T \left[\frac{s(R_{ON}C_{DS}) + 1}{s(R_{ON}C_TR_T) + 1} \right]$$

Where $C_T = C_{LOAD} + C_D + C_{DS}$.

The signal transfer characteristic is dependent on the switch channel capacitance, C_{DS} . This capacitance creates a frequency zero in the numerator of the transfer function A(s). Because the switch on resistance is small, this zero usually occurs at high frequencies. The bandwidth is a function of the switch output capacitance combined with C_{DS} and the load capacitance. The frequency pole corresponding to these capacitances appears in the denominator of A(s).

The dominant effect of the output capacitance, C_D , causes the pole breakpoint frequency to occur first. In order to maximize bandwidth, a switch must have a low input and output capacitance and low on resistance. The on response versus frequency for the ADG701/ADG702 can be seen in Figure 10.

OFF ISOLATION

Off isolation is a measure of the input signal coupled through an off switch to the switch output. The capacitance, C_{DS}, couples the input signal to the output load, when the switch is off, as shown in Figure 19.

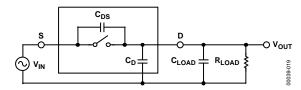


Figure 19. Off Isolation Is Affected by External Load Resistance and Capacitance

The larger the value of C_{DS} , the larger the values of feedthrough produced. Figure 9 illustrates the drop in off isolation as a function of frequency. From dc to roughly 1 MHz, the switch shows better than -75 dB isolation. Up to frequencies of 10 MHz, the off isolation remains better than -55 dB. As the frequency increases, more and more of the input signal is coupled through to the output. Off isolation can be maximized by choosing a switch with the smallest C_{DS} possible. The values of load resistance and capacitance also affect off isolation, as they contribute to the coefficients of the poles and zeros in the transfer function of the switch when open.

$$A(s) = R_T \left[\frac{s(R_{LOAD}C_{DS}) + 1}{s(R_{LOAD})(C_T) + 1} \right]$$

OUTLINE DIMENSIONS

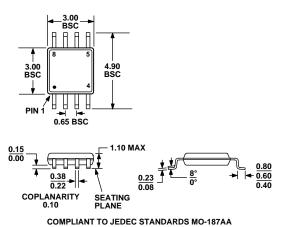


Figure 20. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

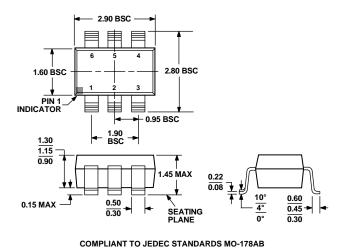
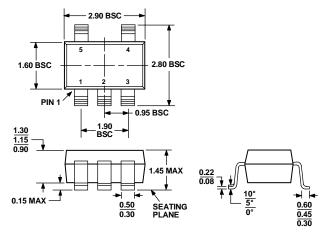



Figure 21. 6-Lead Plastic Surface Mount Package [SOT-23] (RT-6) Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-178AA

Figure 22. 5-Lead Plastic Surface Mount Package [SOT-23] (RJ-5) Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Package Descriptions	Package Options	Brand ¹
ADG701BRJ-500RL7	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RJ-5	S3B
ADG701BRJ-REEL	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RJ-5	S3B
ADG701BRJ-REEL7	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RJ-5	S3B
ADG701BRM	−40°C to +85°C	MSOP (Small Outline)	RM-8	S3B
ADG701BRM-REEL	−40°C to +85°C	MSOP (Small Outline)	RM-8	S3B
ADG701BRM-REEL7	−40°C to +85°C	MSOP (Small Outline)	RM-8	S3B
ADG701BRT	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RT-6	S3B
ADG701BRT-REEL	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RT-6	S3B
ADG701BRT-REEL7	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RT-6	S3B
ADG701BRTZ-REEL ²	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RT-6	S3B
ADG701BRTZ-REEL7	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RT-6	S3B
ADG702BRJ-500RL7	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RJ-5	S4B
ADG702BRJ-REEL	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RJ-5	S4B
ADG702BRJ-REEL7	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RJ-5	S4B
ADG702BRM	−40°C to +85°C	MSOP (Small Outline)	RM-8	S4B
ADG702BRM-REEL	−40°C to +85°C	MSOP (Small Outline)	RM-8	S4B
ADG702BRM-REEL7	−40°C to +85°C	MSOP (Small Outline)	RM-8	S4B
ADG702BRT	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RT-6	S4B
ADG702BRT-REEL	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RT-6	S4B
ADG702BRT-REEL7	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RT-6	S4B
ADG702BRTZ-REEL	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RT-6	S4B
ADG702BRTZ-REEL7	−40°C to +85°C	SOT-23 (Plastic Surface Mount)	RT-6	S4B

 $^{^{\}scriptscriptstyle 1}$ Brand = Due to package size limitations, these three characters represent the part number.

 $^{^{2}}$ Z = Pb-free part.

ADG701/ADG702	
---------------	--

NOTES

