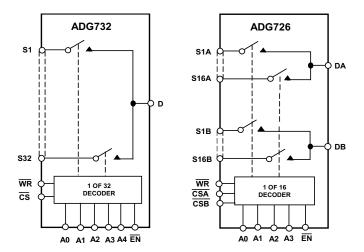
ANALOG DEVICES

16-/32- Channel, $3.5\,\Omega$ 1.8 V to 5.5 V, ±2.5 V, Analog Multiplexers

Preliminary Technical Data

ADG726/ADG732


FEATURES

1.8 V to 5.5 V Single Supply ±2.5 V Dual Supply Operation
3.5 Ω On Resistance
0.5 Ω On Resistance Flatness
Rail to Rail Operation
30ns Switching Times
Single 32 to 1 Channel Multiplexer
Dual/Differential 16 to 1 Channel Multiplexer
TTL/CMOS Compatible Inputs
For Functionally Equivalent devices with Serial Interface See ADG725/ADG731

APPLICATIONS

Optical Applications Data Acquisition Systems Communication Systems Relay replacement Audio and Video Switching Battery Powered Systems Medical Instrumentation Automatic Test Equipment

FUNCTIONAL BLOCK DIAGRAMS

GENERAL DESCRIPTION

The ADG726/ADG732 are monolithic CMOS 32 channel/dual 16 channel analog multiplexers. The ADG732 switches one of thirty-two inputs (S1-S32) to a common output, D, as determined by the 5-bit binary address lines A0, A1, A2, A3 and A4. The ADG726 switches one of sixteen inputs as determined by the four bit binary address lines, A0, A1, A2 and A3.

On chip latches facilitate microprocessor interfacing. The ADG726 device may also be configured for differential operation by tying CSA and CSB together. An $\overline{\text{EN}}$ input is used to enable or disable the devices. When disabled, all channels are switched OFF.

These multiplexers are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance and leakage currents. They operate from single supply of 1.8V to 5.5V and ± 2.5 V dual supply, making them ideally suited to a variety of applications. On resistance is in the region of a few Ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either Multiplexers or De-Multiplexers

REV. PrD 2001

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

and have an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break before make switching action preventing momentary shorting when switching channels.

They are available in either 48 lead LFCSP or TQFP package.

PRODUCT HIGHLIGHTS

- +1.8 V to +5.5 V Single or ±2.5 V Dual Supply operation. These parts are specified and guaranteed with +5 V ±10%, +3 V ±10% single supply and ±2.5 V ±10% dual supply rails.
- 2. On Resistance of 3.5 Ω .
- 3. Guaranteed Break-Before-Make Switching Action.
- 4. 7mm x 7mm 48 lead LF Chip Scale Package (CSP) or 48 lead TQFP package.

$ADG726/ADG732 - SPECIFICATIONS^{1}(V_{DD} = 5V \pm 10\%, V_{SS} = 0V, GND = 0 V, unless otherwise noted)$

	BV	rsion			
Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 V to V_{DD}	V		
On-Resistance (R _{ON})	3.5		Ω typ	$V_{S} = 0$ V to V_{DD} , $I_{DS} = 10$ mA;	
	5.5	6	Ω max	Test Circuit 1	
On-Resistance Match Between	515	0.3	Ω typ	$V_{\rm S} = 0$ V to $V_{\rm DD}$, $I_{\rm DS} = 10$ mA	
Channels (ΔR_{ON})		0.8	Ω max		
On-Resistance Flatness $(R_{FLAT(ON)})$	0.5	0.0	Ω typ	$V_{S} = 0 V$ to V_{DD} , $I_{DS} = 10 mA$	
		1.2	Ω max	.3	
LEAKAGE CURRENTS				$V_{DD} = 5.5 V$	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 4.5 V/1 V$, $V_S = 1 V/4.5 V$;	
	±0.5	±5	nA max	Test Circuit 2	
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_D = 4.5 V/1 V$, $V_S = 1 V/4.5 V$;	
	±0.5	±5	nA max	Test Circuit 3	
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_D = V_S = 1$ V, or 4.5V;	
	±1	±10	nA max	Test Circuit 4	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current					
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		±0.1	μA max		
C _{IN} , Digital Input Capacitance	5		pF typ		
DYNAMIC CHARACTERISTICS ²					
t _{TRANSITION}	40		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, Test Circuit 5	
		60	ns max	$V_{S1} = 3 V/0 V, V_{S32} = 0 V/3V$	
Break-Before-Make Time Delay, t _D	30		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;	
		1	ns min	$V_{\rm S}$ = 3 V, Test Circuit 6	
$t_{ON}(EN, \overline{WR})$	32		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;	
		50	ns max	$V_s = 3 V$, Test Circuit 7	
t _{OFF} (EN)	10		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;	
		14	ns max	$V_s = 3 V$, Test Circuit 8	
Charge Injection	±5		pC typ	$V_s = 0 V, R_s = 0 \Omega, C_L = 1 nF;$	
Off Isolation	-60		dR true	Test Circuit 9 $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$;	
OII Isolation	-00		dB typ	$R_L = 50 \Omega_2$, $C_L = 5 \text{ pr}$, $1 = 100 \text{ kH2}$; Test Circuit 10	
Channel to Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$;	
				Test Circuit 11	
-3 dB Bandwidth	10		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10	
C_{s} (OFF)	13		pF typ	f = 1 MHz	
C _D (OFF)					
ADG726	180		pF typ	f = 1 MHz	
ADG732	360		pF typ	f = 1 MHz	
$C_D, C_S(ON)$					
ADG726	200		pF typ	f = 1 MHz	
ADG732	400		pF typ	f = 1 MHz	
POWER REQUIREMENTS				$V_{\rm DD}$ = +5.5 V	
I _{DD}	10		μA typ	Digital Inputs = 0 V or +5.5 V	
		20	µA max		

NOTES

¹Temperature range is as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

 $Specifications\,subject\,to\,change\,without\,notice.$

ADG726/ADG732

SPECIFICATIONS¹($V_{DD} = 3V \pm 10\%$, $V_{SS} = 0V$, GND = 0 V, unless otherwise noted)

	B Ve				
Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/Comments	
ANALOG SWITCH Analog Signal Range On-Resistance (R_{ON}) On-Resistance Match Between Channels (ΔR_{ON}) On-Resistance Flatness ($R_{FLAT(ON)}$)	6 11	0 V to V _{DD} 12 0.4 1.2 3	V Ω typ Ω max Ω typ Ω max Ω max	$V_{S} = 0 V \text{ to } V_{DD}, I_{DS} = 10 \text{ mA};$ Test Circuit 1 $V_{S} = 0 V \text{ to } V_{DD}, I_{DS} = 10 \text{ mA}$ $V_{S} = 0 V \text{ to } V_{DD}, I_{DS} = 10 \text{ mA}$	
LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) Channel ON Leakage I _D , I _S (ON)	± 0.01 ± 1 ± 0.01 ± 1 ± 0.01 ± 1	±5 ±5 ±10	nA typ nA max nA typ nA max nA typ nA max	$V_{S} = 0 V to V_{DD}, I_{DS} = 10 \text{ mm}$ $V_{DD} = 3.3 \text{ V}$ $V_{S} = 3 \text{ V/1 V}, V_{D} = 1 \text{ V/3 V};$ Test Circuit 2 $V_{S} = 1 \text{ V/3 V}, V_{D} = 3 \text{ V/1 V};$ Test Circuit 3 $V_{S} = V_{D} = +1 \text{ V or } +3 \text{ V};$ Test Circuit 4	
DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	0.005	2.0 0.8 ±0.1	V min V max μA typ μA max pF typ	$V_{IN} = V_{INL}$ or V_{INH}	
DYNAMIC CHARACTERISTICS ² $t_{TRANSITION}$ Break-Before-Make Time Delay, t_D $t_{ON}(EN, \overline{WR})$ $t_{OFF}(EN)$ Charge Injection Off Isolation Channel to Channel Crosstalk -3 dB Bandwidth $C_S (OFF)$ $C_D (OFF)$ ADG726 ADG726 ADG726 OF726	45 30 40 20 ±5 -60 -60 10 13 180 360 200	75 1 70 28	ns typ ns max ns typ ns min ns typ ns max ns typ ns max pC typ dB typ dB typ dB typ MHz typ pF typ pF typ pF typ	$ \begin{array}{l} R_L = 300 \ \Omega, \ C_L = 35 \ pF \ Test \ Circuit \ 5 \\ V_{S1} = 2 \ V/0 \ V, \ V_{S32} = 0 \ V/2 \ V \\ R_L = 300 \ \Omega, \ C_L = 35 \ pF; \\ V_S = 2 \ V, \ Test \ Circuit \ 6 \\ R_L = 300 \ \Omega, \ C_L = 35 \ pF; \\ V_S = 2 \ V, \ Test \ Circuit \ 7 \\ R_L = 300 \ \Omega, \ C_L = 35 \ pF; \\ V_S = 2 \ V, \ Test \ Circuit \ 7 \\ R_L = 300 \ \Omega, \ C_L = 35 \ pF; \\ V_S = 2 \ V, \ Test \ Circuit \ 8 \\ V_S = 0 \ V, \ R_S = 0 \ \Omega, \ C_L = 1 \ nF; \\ Test \ Circuit \ 9 \\ R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz; \\ Test \ Circuit \ 10 \\ R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz; \\ Test \ Circuit \ 11 \\ R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ Test \ Circuit \ 10 \\ f = 1 \ MHz \\ f = 1 \ MHz \\ f = 1 \ MHz \\ \end{array} $	
ADG732 POWER REQUIREMENTS I _{DD}	400 10	20	μA typ μA max	$f = 1 \text{ MHz}$ $f = 1 \text{ MHz}$ $V_{DD} = +3.3 \text{ V}$ Digital Inputs = 0 V or +3.3 V	

NOTES ¹Temperature ranges are as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

	BV	ersion				
		-40°C				
Parameter	+25°C	to +85°C	Units	Test Conditions/Comments		
ANALOG SWITCH						
Analog Signal Range		V_{SS} to V_{DD}	V			
On-Resistance (R _{ON})	3.5	00 22	Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA;		
	5.5	6	Ω max	Test Circuit 1		
On-Resistance Match Between		0.3	Ω typ	$V_{S} = V_{SS}$ to V_{DD} , $I_{DS} = 10 \text{ mA}$		
Channels (ΔR_{ON})		0.8	Ωmax			
On-Resistance Flatness (R _{FLAT(ON)})	0.5		Ω typ	$V_{S} = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA		
		1.2	Ω max			
LEAKAGE CURRENTS				$V_{DD} = +2.75 \text{ V}, V_{SS} = -2.75 \text{ V}$		
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_{\rm S}$ = +2.25 V/-1.25 V, $V_{\rm D}$ = -1.25 V/+2.25 V;		
	±1	±5	nA max	Test Circuit 2		
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_{s} = +2.25 V/-1.25 V, V_{D} = -1.25 V/+2.25 V;$		
	±1	±5	nA max	Test Circuit 3		
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_{s} = V_{D} = +2.25 \text{ V/-}1.25 \text{ V}$, Test Circuit 4		
	±1	±10	nA max			
DIGITAL INPUTS						
Input High Voltage, V _{INH}		1.7	V min			
Input Low Voltage, V _{INL}		0.7	V max			
Input Current			,			
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}		
-INLINH		±0.1	$\mu A max$	IN TINE - TINH		
C _{IN} , Digital Input Capacitance	5	_0.1	pF typ			
DYNAMIC CHARACTERISTICS ²						
t _{TRANSITION}	40		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$ Test Circuit 5		
		60	ns max	$V_{S1} = 1.5 \text{ V/0 } V, V_{S32} = 0 \text{ V/1.5 V}$		
Break-Before-Make Time Delay, t _D	15		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$		
		1	ns min	$V_s = 1.5 V$, Test Circuit 6		
$t_{ON}(EN, \overline{WR})$	32		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;		
		50	ns max	$V_s = 1.5 V$, Test Circuit 7		
t _{OFF} (EN)	16		ns typ	$R_{L} = 300 \Omega$, $C_{L} = 35 pF$;		
		26	ns max	$V_s = 1.5 V$, Test Circuit 8		
Charge Injection	±8		pC typ	$V_{S} = 0 V, R_{S} = 0 \Omega, C_{L} = 1 nF; Test 9$		
Off Isolation	-60		dB typ	$R_{L} = 50 \Omega$, $C_{L} = 5 pF$, $f = 1 MHz$;		
				Test Circuit 10		
Channel to Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$		
-3 dB Bandwidth	10		MH7 turn	Test Circuit 11 $R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10		
$C_{\rm S}$ (OFF)	10		MHz typ pF typ	$K_L = 50.52$, $C_L = 5$ pF, rest Circuit 10		
$C_{\rm S}$ (OFF) $C_{\rm D}$ (OFF)			pr typ			
ADG726	180		pF typ	f = 1 MHz		
ADG720 ADG732	360		pF typ pF typ	f = 1 MHz		
$C_D, C_S (ON)$	500		pr typ	1 - 1 191112		
ADG726	200		pF typ	f = 1 MHz		
ADG720 ADG732	400		pF typ	f = 1 MHz		
POWER REQUIREMENTS			1 'JT	$V_{\rm DD} = +2.75 \text{ V}$		
-	10		μA typ	$V_{DD} = +2.75$ V Digital Inputs = 0 V or +2.75 V		
I _{DD}	10	20	μA typ μA max	D_{1} D_{1} D_{1} D_{1} D_{1} D_{2} D_{1} D_{2} D_{1} D_{2} D_{2} D_{1} D_{2} D_{2		
I _{SS}	10	20	μA max μA typ	$V_{SS} = -2.75 V$		
+22		20	μA typ μA max	$V_{SS} = -2.75$ V Digital Inputs = 0 V or +2.75 V		
NOTES	L	20	μιι παλ			

NOTES

¹Temperature range is as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG726/ADG732

TIMING CHARACTERISTICS^{1,2,3}

Parameter	Limit at T _{MIN} , T _{MAX}	Units	Conditions/Comments
t ₁	0	ns min	$\overline{\text{CS}}$ to $\overline{\text{WR}}$ Setup Time
t ₂	0	ns min	$\overline{\text{CS}}$ to $\overline{\text{WR}}$ Hold Time
t ₃	20	ns min	\overline{WR} pulse width
t ₄	10	ns min	Time between \overline{WR} cycles
t ₅	5	ns min	Address, Enable Setup Time
t ₆	2	ns min	Address, Enable Hold Time

NOTES

¹See Figure 1.

²All input signals are specified with tr =tf = 5ns (10% to 90% of V_{DD}) and timed from a voltage level of ($V_{IL} + V_{IH}$)/2.

³Guaranteed by design and characterisation, not production tested.

Specifications subject to change without notice.

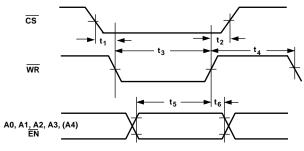


Figure 1. Timing Diagram

Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while \overline{WR} is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of \overline{WR} . The ADG726 has two \overline{CS} inputs. This enables the part to be used either as a dual 16-1 channel multiplexer or a differential 16 channel multiplexer. If a differential output is required, tie \overline{CSA} and \overline{CSB} together.

ABSOLUTE MAXIMUM RATINGS¹

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$	
V _{DD} to V _{SS}	+7 V
V _{DD} to GND	–0.3 V to +7 V
V _{SS} to GND	+0.3 V to -7 V
Analog Inputs ²	V_{SS} - 0.3 V to V_{DD} +0.3 Vor
30	mA, Whichever Occurs First
Digital Inputs ²	-0.3V to V_{DD} +0.3 V or
30	mA, Whichever Occurs First
Peak Current, S or D	60mA
(Pulsed at	1 ms, 10% Duty Cycle max)
Continuous Current, S or D	30mA
Operating Temperature Rang	ge
Industrial (B Version)	-40° C to $+85^{\circ}$ C

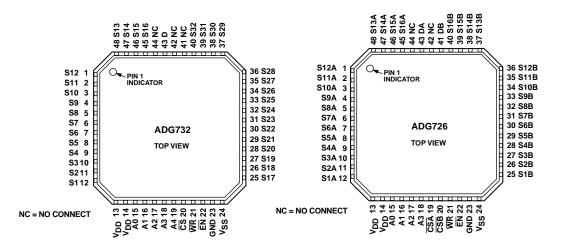
Storage Temperature Range	-65°C to +150°C
Junction Temperature	+150°C
48 lead CSP θ_{JA} Thermal Impedance	TBD°C/W
48 lead TQFP θ_{JA} Thermal Impedance	TBD°C/W
Lead Temperature, Soldering (10second	s) 300°C
IR Reflow, Peak Temperature	+220°C
110 7770	

NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at A, \overline{WR} , \overline{RS} , S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION


ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG726/ADG732 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

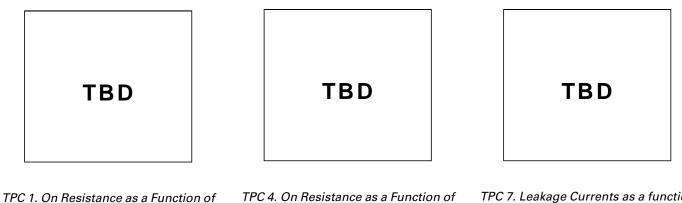
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG726BCP	-40 °C to +85 °C	Chip Scale Package (CSP)	CP-48
ADG726BSU	-40 °C to +85 °C	Thin Quad Flatpack	SU-48
ADG732BCP	-40 °C to +85 °C	Chip Scale Package (CSP)	CP-48
ADG732BSU	-40 °C to +85 °C	Thin Quad Flatpack	SU-48

PIN CONFIGURATIONS CSP & TQFP

Table 1. ADG726 Truth Table								
A3	A2	A1	A0	$\overline{E} \overline{N}$	$\overline{C}\overline{S}\overline{A}$	$\overline{C} \overline{S} \overline{B}$	$\overline{W} \overline{R}$	ONSwitch
X	Х	Х	Х	Х	1	1	L->H	Retains previous switch condition
Х	Х	Х	Х	Х	1	1	Х	No Change in Switch condition
Х	Х	Х	Х	1	0	0	0	NONE
0	0	0	0	0	0	0	0	S1A - DA, S1B - DB
0	0	0	1	0	0	0	0	S2A - DA, S2B - DB
0	0	1	0	0	0	0	0	S3A - DA, S3B - DB
0	0	1	1	0	0	0	0	S4A - DA, S4B - DB
0	1	0	0	0	0	0	0	S5A - DA, S5B - DB
0	1	0	1	0	0	0	0	S6A - DA, S6B - DB
0	1	1	0	0	0	0	0	S7A - DA, S7B - DB
0	1	1	1	0	0	0	0	S8A - DA, S8B - DB
1	0	0	0	0	0	0	0	S9A - DA, S9B - DB
1	0	0	1	0	0	0	0	S10A - DA, S10B - DB
1	0	1	0	0	0	0	0	S11A - DA, S11B - DB
1	0	1	1	0	0	0	0	S12A - DA, S12B - DB
1	1	0	0	0	0	0	0	S13A - DA, S13B - DB
1	1	0	1	0	0	0	0	S14A - DA, S14B - DB
1	1	1	0	0	0	0	0	S15A - DA, S15B - DB
1	1	1	1	0	0	0	0	S16A - DA, S16B - DB

Table 2. ADG732 Truth Table

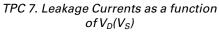

A4	A3	A2	A1	A0	$\overline{E} \overline{N}$	$\overline{C} \overline{S}$	$\overline{W} \overline{R}$	Switch Condition
X	Х	Х	Х	Х	Х	1	L->H	Retains previous switch condition
Х	Х	Х	Х	Х	Х	1	Х	No Change in Switch Condition
Х	Х	Х	Х	Х	1	0	0	NONE
0	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	2
0	0	0	1	0	0	0	0	3
0	0	0	1	1	0	0	0	4
0	0	1	0	0	0	0	0	5
0	0	1	0	1	0	0	0	6
0	0	1	1	0	0	0	0	7
0	0	1	1	1	0	0	0	8
0	1	0	0	0	0	0	0	9
0	1	0	0	1	0	0	0	10
0	1	0	1	0	0	0	0	11
0	1	0	1	1	0	0	0	12
0	1	1	0	0	0	0	0	13
0	1	1	0	1	0	0	0	14
0	1	1	1	0	0	0	0	15
0	1	1	1	1	0	0	0	16
1	0	0	0	0	0	0	0	17
1	0	0	0	1	0	0	0	18
1	0	0	1	0	0	0	0	19
1	0	0	1	1	0	0	0	20
1	0	1	0	0	0	0	0	21
1	0	1	0	1	0	0	0	22
1	0	1	1	0	0	0	0	23
1	0	1	1	1	0	0	0	24
1	1	0	0	0	0	0	0	25
1	1	0	0	1	0	0	0	26
1	1	0	1	0	0	0	0	27
1	1	0	1	1	0	0	0	28
1	1	1	0	0	0	0	0	29
1	1	1	0	1	0	0	0	30
1	1	1	1	0	0	0	0	31
1	1	1	1	1	0	0	0	32

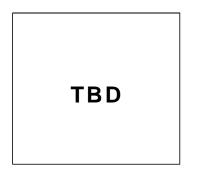
ADG726/ADG732

TERMINOLOGY

V _{DD}	Most positive power supply potential.
V _{SS}	Most Negative power supply in a dual supply application. In single supply applications, connect to GND.
I _{DD}	Positive supply current.
I _{SS}	Negative supply current.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
IN	Logic control input.
$V_{\rm D}\left(V_{\rm S}\right)$	Analog voltage on terminals D, S
R _{ON}	Ohmic resistance between D and S.
ΔR_{ON}	On resistance match between any two channels, i.e. R _{ON} max - R _{ON} min
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on-resistance as mea sured over the specified analog signal range.
I _S (OFF)	Source leakage current with the switch "OFF."
I_D (OFF)	Drain leakage current with the switch "OFF."
I_D , I_S (ON)	Channel leakage current with the switch "ON."
V _{INL}	Maximum input voltage for logic "0".
V _{INH}	Minimum input voltage for logic "1".
$I_{INL}(I_{INH})$	Input current of the digital input.
C _S (OFF)	"OFF" switch source capacitance. Measured with reference to ground.
C_D (OFF)	"OFF" switch drain capacitance. Measured with reference to ground.
$C_D, C_S(ON)$	"ON" switch capacitance. Measured with reference to ground.
C_{IN}	Digital input capacitance.
t _{TRANSITION}	Delay time measured between the 50% and 90% points of the digital inputs and the switch "ON" condition when switching from one address state to another.
$t_{ON}(\overline{EN})$	Delay time between the 50% and 90% points of the $\overline{\text{EN}}$ digital input and the switch "ON" condition.
$t_{OFF}(\overline{EN})$	Delay time between the 50% and 90% points of the $\overline{\text{EN}}$ digital input and the switch "OFF" condition.
t _{OPEN}	"OFF" time measured between the 80% points of both switches when switching from one address state to another.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Crosstalk	A measure of unwanted signal is coupled through from one channel to another as a result of parasitic capacitance.
On Response	The Frequency response of the "ON" switch.
Insertion Loss	The loss due to the ON resistance of the switch.

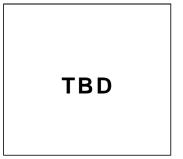
TYPICAL PERFORMANCE CHARACTERISTICS

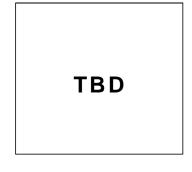

Single Supply


TBD

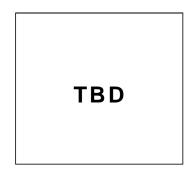
TPC 5. On Resistance as a Function of

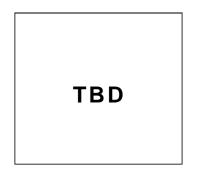
 $V_D(V_S)$ for Different Temperatures, Dual Supply

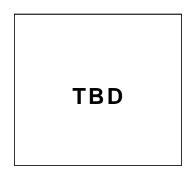

TPC 4. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, of $V_D(V_S)$

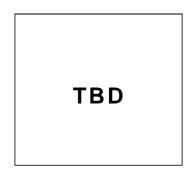


 $V_D(V_S)$ for for Single Supply


TPC 2. On Resistance as a Function of $V_D(V_S)$ for Dual Supply

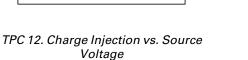

- TBD

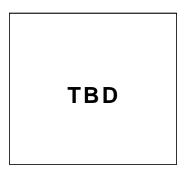

TPC 8. Leakage Currents as a function of $V_D(V_S)$


- TPC 3. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, Single Supply
- TPC 6. Leakage Currents as a function of $V_D(V_S)$
- TPC 9. Leakage Currents as a function of Temperature

TPC 10. Leakage Currents as a Function of Temperature

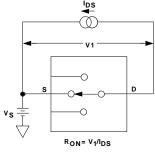
TPC 13. T_{ON}/T_{OFF} Times vs. Temperature

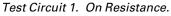

TPC 16. On Response vs. Frequency

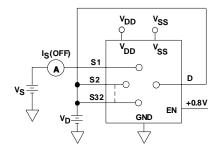


- TPC 11. Supply Currents vs. Input Switching Frequency
- TPC 14. Off Isolation vs. Frequency

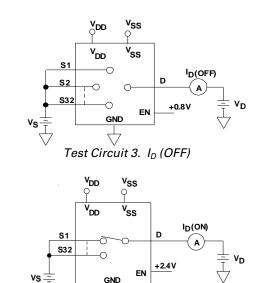
TBD

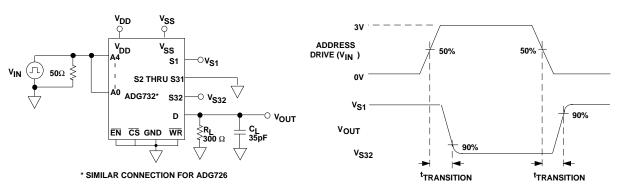




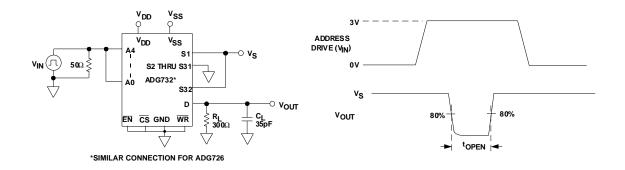


TPC 15. Crosstalk vs. Frequency


Test Circuits

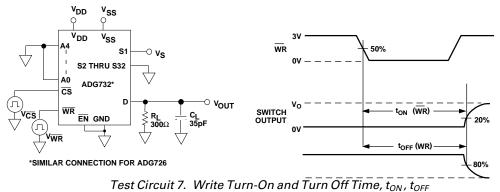


Test Circuit 2. I_S (OFF).

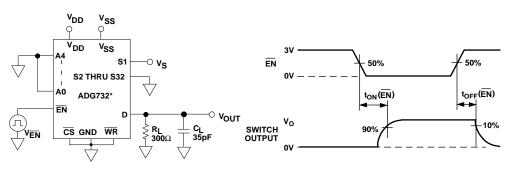


Test Circuit 4. I_D (ON)

 \forall

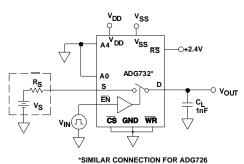


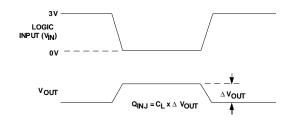
Test Circuit 5. Switching Time of Multiplexer, t_{TRANSITION}.

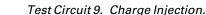


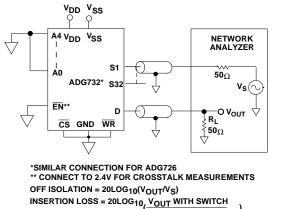
Test Circuit 6. Break Before Make Delay, t_{OPEN}.

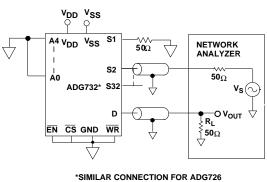
ADG726/ADG732

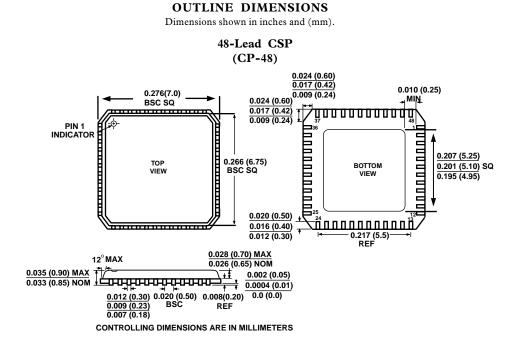


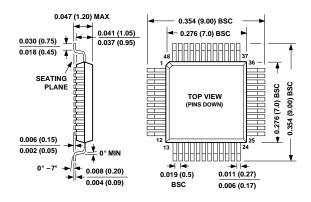





*SIMILAR CONNECTION FOR ADG726




VOUT WITHOUT SWITCH


*SIMILAR CONNECTION FOR ADG726 CHANNEL TO CHANNEL CROSSTALK= 20LOG10(VOUT/VS)

Test Circuit 11. Channel-to-Channel Crosstalk.

Test Circuit 10. OFF Isolation and Bandwidth.

48-Lead TQFP (SU-48)

