FEATURES

Low Supply Current: $\mathbf{6 0 0} \mu \mathrm{A}$ Max
Very Low Offset: $35 \mu \mathrm{~V}$ Max
Low Drift: $1.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
Very Low Bias Current
$25^{\circ} \mathrm{C}$: 100 pA Max
Low Noise: $0.5 \mu \mathrm{~V}$ p-p Typ
High Common-Mode Rejection: $\mathbf{1 1 4} \mathbf{d B}$ Min

GENERAL DESCRIPTION

The PM 1012 is a general purpose, precision operational amplifier. Offering several performance enhancements over industrystandard precision op amps such as the OP07, the PM 1012 requires less than $1 / 6$ the supply current. T hese enhancements include exceptionally low bias currents of only $\pm 80 \mathrm{pA}$, typical, over the full military temperature range, and 132 dB of com-mon-mode rejection and power-supply rejection. The PM 1012's low offset voltage of $35 \mu \mathrm{~V}$ maximum frees the user from external nulling in most circuits.
An open-loop gain of two million into a $10 \mathrm{k} \Omega$ load ensures that excellent linearity is maintained even in high gain configurations, and 5 mA of output current allows $2 \mathrm{k} \Omega$ loads to be driven with an open-loop gain of one million. The PM 1012 offers low noise, especially for a low power amplifier-only $17 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 10 Hz . Exceptionally low current noise minimizes

REV. C

[^0]
PIN CONNECTIONS

noise contributions when high source impedances are used. The PM 1012 may be overcompensated, using Pin 5 to limit the amplifier's bandwidth, further reducing system noise and increasing stability with large capacitive loads.
The PM 1012 conforms to the OP07 pinout with nulling through Pins 1 and 8 to the positive supply. It offers an upgrade to the OP07 in sockets where reduced power dissipation or low bias currents are attractive. It may also be used as an upgrade from the OP12, OP05 and 725 type op amps. The PM 1012 may replace 741 type op amps by removing the nulling potentiometer, if used.

PM1012- SPECIFICATIONS

Parameter	Symbol	Conditions	PM1012G			Units
			Min	Typ	Max	
Input Offset V oltage	$\mathrm{V}_{\text {OS }}$	(N ote 1)		10	50	$\mu \mathrm{V}$
				25	120	$\mu \mathrm{V}$
L ong-T erm						
$\mathrm{V}_{\text {OS }}$ Stability	$\Delta \mathrm{V}_{\text {OS }} /$ T ime	(ote 1)		0.3		$\mu \mathrm{V} / \mathrm{M}$ onth
Input O ffset C urrent	Ios			20	150	pA
				30	200	pA
Input Bias C urrent	I_{B}	(N ote 1)		± 30	± 150	pA
				± 40	± 200	pA
Input N oise Voltage	$e_{n} p-p$	0.1 Hz to 10 Hz		0.5		$\mu \mathrm{V}$ p-p
Input N oise Voltage D ensity	e_{n}	$\mathrm{f}_{0}=10 \mathrm{~Hz}^{2}$		17	30	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}_{0}=1000 \mathrm{~Hz}^{3}$		14	22	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Input N oise Current D ensity	I_{n}	$\mathrm{f}_{0}=10 \mathrm{~Hz}$		20		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
L arge-Signal Voltage G ain	$\mathrm{A}_{\text {vo }}$	$\mathrm{V}_{0}= \pm 12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	200	2000		V / mV
		$\mathrm{V}_{0}= \pm 10 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	120	1000		V / mV
Common-M ode Rejection	CM R	$\mathrm{V}_{\text {CM }}= \pm 13.5 \mathrm{~V}$	110	132		$d B$
Power-Supply Rejection	PSR	$\mathrm{V}_{\mathrm{S}}= \pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	110	132		dB
Input V oltage R ange	IVR	(N ote 4)	± 13.5	± 14.0		V
Output V oltage Swing	V_{0}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 14		V
Slew Rate	SR		0.1	0.2		$\mathrm{V} / \mu \mathrm{S}$
Full-Power B andwidth	BW_{P}			3		kHz
G ain Bandwidth Product	G BW	$A_{V}=+100$		0.5		MHz
Supply Current	$\mathrm{I}_{\text {SY }}$	(N ote 1)		380	600	$\mu \mathrm{A}$
Supply Voltage	V_{S}	Operating R ange	± 2	± 15	± 20	V

NOTES
${ }^{1}$ These specifications apply for $\pm 2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-13.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+13.5 \mathrm{~V}$ (for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$).
${ }^{2} 10 \mathrm{~Hz}$ noise voltage density is sample tested. D evices 100% tested for noise are available on request.
${ }^{3}$ Sample tested.
${ }^{4}$ Guaranteed by CM R test.
Specifications subject to change without notice.

| Parameter | Symbol | Conditions | Min | PM1012G
 Typ | Max |
| :--- | :--- | :--- | :--- | :--- | :--- | Units

[^1]
ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Supply Voltage	$\pm 20 \mathrm{~V}$
Input Voltage ${ }^{2}$	$\pm 20 \mathrm{~V}$
Differential Input Voltage ${ }^{3}$	$\pm 1 \mathrm{~V}$
D ifferential Input C urrent ${ }^{3}$	$\pm 10 \mathrm{~mA}$
Output Short-Circuit Duration	Indefinite
Operating Temperature R ange	
PM 1012G (P, S)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage T emperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction T emperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead T emperature (Soldering, 60 sec)	$+300^{\circ} \mathrm{C}$

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\mathbf{4}}$	$\boldsymbol{\theta}_{\mathbf{J} \mathbf{c}}$	Units
8-Lead Plastic DIP (P)	103	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead SO (S)	158	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES
${ }^{1}$ Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
${ }^{2}$ F or supply voltages less than $\pm 20 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
${ }^{3}$ The PM 1012's inputs are protected by back-to-back diodes. Current-limiting resistors are not used in order to achieve low noise. Differential input voltages greater than 1 V will cause excessive current to flow through the input protection diodes unless limiting resistance is used.
${ }^{4} \theta_{J A}$ is specified for worst case mounting conditions, i.e., $\theta_{J A}$ is specified for device in socket for cerdip, and P-DIP packages; θ_{JA} is specified for device soldered to printed circuit board for SO package.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Options
PM 1012GP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	$\mathrm{N}-8$
PM 1012GS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOIC	SO-8

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the PM 1012 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead Plastic DIP
 ($\mathrm{N}-8$)

8-Lead SOIC
(SO-8)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: NOTES
 ${ }^{1}$ These specifications apply for $\pm 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-13.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+13.5 \mathrm{~V}$ (for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$).
 ${ }^{2}$ Guaranteed by CM R test.
 Specifications subject to change without notice.

