

Low Capacitance, 4- and 8-Channel ±15 V/12 V iCMOS™ Multiplexers

Preliminary Technical Data

ADG1208/ADG1209

FEATURES

2 pF off capacitance
1 pC charge injection
33 V supply range
120 Ω on resistance
Fully specified at ±15 V/12 V
3 V logic compatible inputs
Rail-to-rail operation
Break-before-make switching action
16-lead TSSOP and 4 mm × 4 mm LFCSP packages
Typical power consumption (< 0.03 μW)

APPLICATIONS

Audio and video routing Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Communication systems

GENERAL DESCRIPTION

The ADG1208 and ADG1209 are monolithic *i*CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG1208 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1, and A2. The ADG1209 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.

The *i*CMOS (industrial-CMOS) modular manufacturing process combines high-voltage CMOS (complementary metal-oxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33-V operation in a footprint that no other generation of high-voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages, while providing increased performance, dramatically lower power consumption, and reduced package size.

FUNCTIONAL BLOCK DIAGRAMS

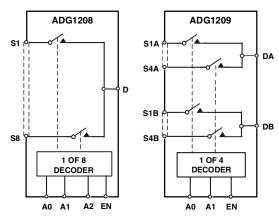


Figure 1.

The ultralow capacitance and charge injection of these multiplexers make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth make the parts suitable for video signal switching. *i*CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery powered instruments.

PRODUCT HIGHLIGHTS

- 1. 2 pF off capacitance (±15 V supply).
- 2. 1 pC charge injection.
- 3. 3 V logic compatible digital input $V_{IH} = 2.0 \text{ V}$, $V_{IL} = 0.8 \text{ V}$.
- 4. 16-lead TSSOP and 4 mm ×4 mm LFCSP package.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Preliminary Technical Data

TABLE OF CONTENTS

Specifications3	Pin Configurations—TSSOP	8
Dual Supply 3	Terminology	9
Single Supply4	Typical Performance CharacteristicS	10
Dual Supply Error! Bookmark not defined.	Test Circuits	12
Absolute Maximum Ratings7	Outline Dimensions	14
ESD Caution	Ordering Guide	14

REVISION HISTORY

SPECIFICATIONS

DUAL SUPPLY¹

 V_{DD} = +15 V \pm 10%, V_{SS} = -15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	−40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	
Ron	140		Ω typ	$V_D = \pm 10 \text{ V, } I_S = -10 \text{ mA}$
	160		Ω max	
Ron Flatness	55		Ω typ	$V_D = +10 \text{ V}, -10 \text{ V}$
			Ω max	
ΔR_{ON}	5		Ωtyp	$V_D = +10 \text{ V}, -10 \text{ V}$
ΔΛΟΝ			* *	VB = +10 V, -10 V
FAKACE CURRENTS			Ω max	
LEAKAGE CURRENTS				V 10VV 10V
Source OFF Leakage Is (OFF)	±0.01		nA typ	$V_D = \pm 10 \text{ V}, V_S = -10 \text{ V};$
	.05	. 5		Test Circuit 2
Durin OFF Lastrana L (OFF)	±0.5	±5	nA max	±0.5
Drain OFF Leakage I _D (OFF)	1,1	.10	A	$V_D = \pm 10 \text{ V}; V_S = \pm 10 \text{ V};$
ADG1208	±1	±10	nA max	Test Circuit 3
ADG1209	±1	±5	nA max	V V 11016
Channel ON Leakage I _D , I _S (ON) ADG1208	±1	±10	nA max	$V_S = V_D = \pm 10 V;$ Test Circuit 4
ADG1208 ADG1209	±1	±10 ±5	nA max	rest circuit 4
DIGITAL INPUTS	Ξ1	±5	IIA IIIax	
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current		0.6	VIIIax	
I _{INL} or I _{INH}	±0.005		μA max	V _{IN} = V _{INL} or V _{INH}
IINL OF TINH	10.003	±0.5	μΑ max	VIN— VINL OI VINH
C _{IN} , Digital Input Capacitance	5	±0.5	pF typ	
DYNAMIC CHARACTERISTICS ²	3		ргсур	
transition	80	120	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
CIRANSITION	00	250	ns max	$V_{S1} = \pm 10 \text{ V}, V_{S8} = \pm 10 \text{ V};$
		250	113 THUX	Test Circuit 5
Тввм	10	10	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
. 55111		1	ns min	$V_S = 10 \text{ V}$; Test Circuit 6
ton(EN)	85	125	ns typ	$R_L = 300 \Omega C_L = 35 pF;$
30.1(=: 1)	150	225	ns max	V _S = 5 V; Test Circuit 7
t _{OFF} (EN)	40	65	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
10.1 (1.1)		150	ns max	$V_S = 5 \text{ V}$; Test Circuit 7
Charge Injection	1		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 10 \text{ nF};$ Test Circuit 8
OFF Isolation	75		dB typ	$R_L = 1 \text{ k}\Omega$, $f = 100 \text{ kHz}$;
On Boldton	' '		db typ	$V_{EN} = 0$ V; Test Circuit 9
Channel-to-Channel Crosstalk	85		dB typ	$RL = 1 \text{ k}\Omega$, $f = 100 \text{ kHz}$;
Charlife to Charlife Closstaik			ab typ	Test Circuit 10
Total Harmonic Distortion, THD + N	0.002		% typ	$R_L = 600 \Omega$, 5 V rms; $f=20 Hz$ to
	0.002		/0 LyP	
				20 kHz
–3 dB Bandwidth	700		MHz typ	$R_L = 300 \Omega$, $C_L = 5 pF$; Test Circuit 10

Parameter	+25°C	−40°C to	Unit	Test Conditions/Comments
		+125°C		
C _s (OFF)	1.5		pF typ	
C _D (OFF)				
ADG1208	11		pF typ	
ADG1209	6		pF typ	
C_D , C_S (ON)				
ADG1208	15		pF typ	
ADG1209	8		pF typ	
POWER REQUIREMENTS				$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I _{DD}	0.001		μA typ	Digital inputs= 0 V or V _{DD}
		5	μA max	
I _{DD}	150		μA typ	Digital inputs= 5 V
		300	μA max	
Iss	0.001		μA typ	Digital inputs= 0 V or V _{DD}
		5	μA max	
I _{GND}	0.001		μA typ	Digital inputs= 0 V or VDD
		5	μA max	
Ignd	150		μA typ	Digital inputs= 5 V
		300	μA max	

 $^{^1}$ Temperature ranges are as follows: B Version: -40°C to +125°C. 2 Guaranteed by design, not subject to production test.

SINGLE SUPPLY¹

 V_{DD} = 12 V V \pm 10%,, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	−40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH	1			
Analog Signal Range		0 to V_{DD}	V	
R _{ON}	300		Ωtyp	$V_D = 3 \text{ V}, 10 \text{ V}, I_S = -1 \text{ mA}$
			Ω max	
R _{ON} Flatness	150		Ωtyp	$V_D = 3 \text{ V}, 10 \text{ V}, I_S = -1 \text{ mA}$
			Ω max	
ΔR_{ON}	5		Ω typ	$V_D = 3 \text{ V}, 10 \text{ V}, I_S = -1 \text{ mA}$
			Ω max	
LEAKAGE CURRENTS				
Source OFF Leakage Is (OFF)	±0.01		nA typ	$V_D = \pm 10 \text{ V}, V_S = -10 \text{ V};$
				Test Circuit 2
	±0.5	±5	nA max	±0.5
Drain OFF Leakage I _D (OFF)				$V_D = \pm 10 \text{ V}; V_S = \pm 10 \text{ V};$
ADG1208	±1	±10	nA max	Test Circuit 3
ADG1209	±1	±5	nA max	
Channel ON Leakage I _D , I _S (ON)				$V_S = V_D = 8 \text{ V/0 V};$
ADG1208	±1	±10	nA max	Test Circuit 4
ADG1209	±1	±5	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				

Parameter	+25°C	−40°C to +125°C	Unit	Test Conditions/Comments
InL or Inh		±10	μA max	$V_{IN} = 0$ or V_{DD}
C _{IN} , Digital Input Capacitance	8		pF typ	f = 1 MHz
DYNAMIC CHARACTERISTICS ²				
t transition	130		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
				$V_{S1} = 8 \text{ V/0 V}, V_{S8} = 0 \text{ V/8 V};$
				Test Circuit 5
T _{BBM}	10		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		1	ns min	$V_S = 5 \text{ V}$; Test Circuit 6
t _{ON} (EN)	140		ns typ	$R_L = 300 \Omega C_L = 35 pF;$
	·			V _S = 5 V; Test Circuit 7

Parameter	+25°C	−40°C to +125°C	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ²				
t _{OFF} (EN)	60		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
				$V_S = 5 V$; Test Circuit 7
Character to	_			$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 10 \text{ nF};$
Charge Injection	5		pC typ	Test Circuit 8
OFF Isolation	-75		dB typ	$R_L = 1 \text{ k}\Omega \text{ f} = 100 \text{ kHz};$
				V _{EN} = 0 V; Test Circuit 9
Channel-to-Channel Crosstalk	85		dB typ	$R_L = 1 \text{ k}\Omega, f = 100 \text{ kHz};$
				Test Circuit 10
Total Harmonic Distortion, THD + N	0.002		% typ	$R_L = 600 \Omega$, 5 V rms; $f=20 Hz$ to 20 kHz
–3 dB Bandwidth	50		MHz typ	$R_L = 300 \Omega$, $C_L = 5 pF$; Test Circuit 10
C _s (OFF)	2		pF typ	f = 1 MHz
C _D (OFF)				f = 1 MHz
ADG1208	11		pF typ	
ADG1209	6		pF typ	
C_D, C_S (ON)				f = 1 MHz
ADG1208	15		pF typ	
ADG1209	8		pF typ	
POWER REQUIREMENTS				V _{DD} = 13.2 V
I _{DD}		1	μA typ	Digital inputs= 0 V or V _{DD}
		5	μA max	
I_{DD}	150		μA typ	Digital inputs= 5
		300	μA max	

 $^{^1}$ Temperature ranges are as follows: B Version: –40°C to +125°. 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings $T_A = 25$ °C, unless otherwise noted.

Table 3.

3 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given

PIN CONFIGURATIONS

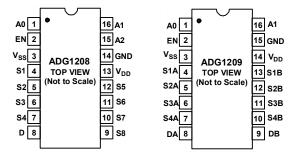


Figure 2. Pin Configurations—TSSOP

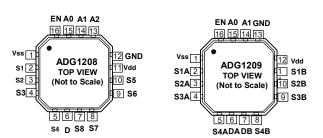


Figure 3. Pin Configurations – 4mm x4mm LFCSP

Table 4. ADG1208 Truth Table

A2	A 1	A0	EN	ON SWITCH	
Х	Χ	Χ	0	NONE	
0	0	0	1	1	
0	0	1	1	2	
0	1	0	1	3	
0	1	1	1	4	
1	0	0	1	5	
1	0	1	1	6	
1	1	0	1	7	
1	1	1	1	8	

Table 5. ADG1209 Truth Table

Al	A0	EN	ON SWITCH PAIR
Χ	Х	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

TERMINOLOGY

Table 6.

Mnemonic	Description
V_{DD}	Most positive power supply potential.
Vss	Most negative power supply potential in dual supplies. In single supply applications, it may be connected to ground.
GND	Ground (0 V) reference.
Ron	Ohmic resistance between D and S.
ΔR_{ON}	Difference between the R _{ON} of any two channels.
Is (OFF)	Source leakage current when the switch is off.
I _D (OFF)	Drain leakage current when the switch is off.
I _D , I _s (ON)	Channel leakage current when the switch is on.
V_D (vs)	Analog voltage on terminals D, S.
Cs (OFF)	Channel input capacitance for OFF condition.
C _D (OFF)	Channel output capacitance for OFF condition.
C _D , C _S (ON)	ON switch capacitance.
CI _N	Digital input capacitance.
ton (EN)	Delay time between the 50% and 90% points of the digital input and switch ON condition.
t _{OFF} (EN)	Delay time between the 50% and 90% points of the digital input and switch OFF condition.
t transition	Delay time between the 50% and 90% points of the digital inputs and the switch ON condition when switching from one address state to another.
t _{open}	OFF time measured between the 80% point of both switches when switching from one address state to another.
V _{INL}	Maximum input voltage for Logic 0.
V _{INH}	Minimum input voltage for Logic 1.
I _{INL} (I _{INH})	Input current of the digital input.
I _{DD}	Positive supply current.
lss	Negative supply current.
Off Isolation	A measure of unwanted signal coupling through an OFF channel.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Bandwidth	The frequency at which the output is attenuated by 3dBs.
On Response	The frequency response of the "ON" switch.
THD + N	The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

TBD TBD Figure 4. On Resistance as a Function of VD(VS) for Single Supply Figure 7. On Resistance as a Function of VD(VS) for Different Temperatures, Single Supply TBD

Figure 5. On Resistance as a Function of VD(VS) for Dual Supply

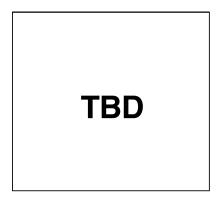


Figure 6. On Resistance as a Function of VD(VS) for Different Temperatures, Single Supply

Figure 8. On Resistance as a Function of VD(VS) for Different Temperatures, Dual Supply

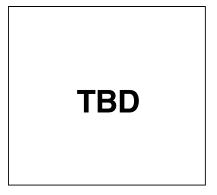


Figure 9. Leakage Currents as a Function of V_D (V_S)

TBD

Figure 10. Leakage Currents as a function of Temperature

TBD

Figure 11. Supply Currents vs. Input Switching Frequency

TBD

Figure 12. Charge Injection vs. Source Voltage

TBD

Figure 13. TON/TOFF Times vs. Temperature)

TBD

Figure 14. Off Isolation vs. Frequency

TBD

Figure 15. Crosstalk vs. Frequency

TBD

Figure 16. On Response vs. Frequency

TBD

Figure 17. THD + N vs. Frequency

TEST CIRCUITS

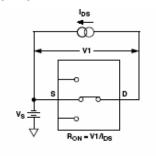


Figure 18. Test Circuit 1. On Resistance

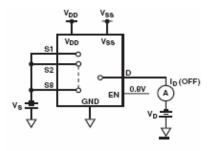


Figure 20. Test Circuit 3. I_D (OFF)

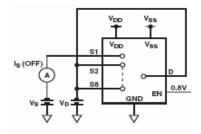


Figure 19. Test Circuit 2. I₅ (OFF)

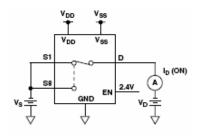


Figure 21. Test Circuit 4. I_D (ON)

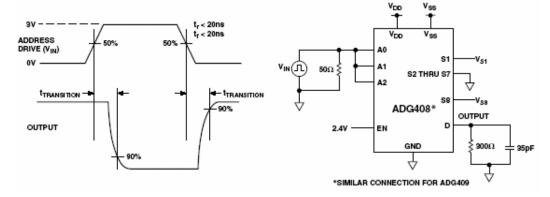


Figure 22. Test Circuit 5. Switching Time of Multiplexer, ttransition

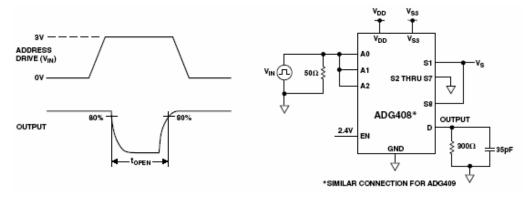


Figure 23. Test Circuit 6. Break-Before-Make Delay, topen

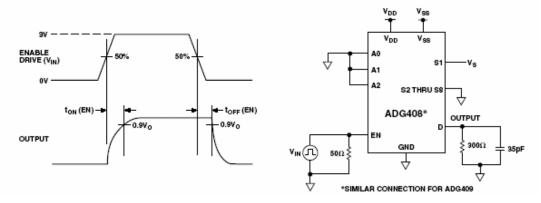


Figure 24. Test Circuit 7. Enable Delay, ton (EN), toff (EN)

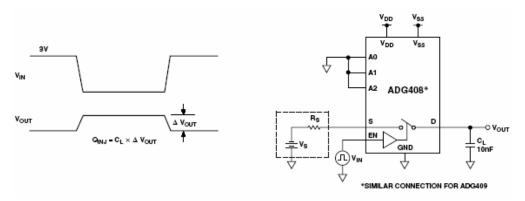


Figure 25. Test Circuit 8. Charge Injection

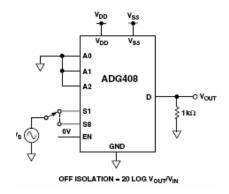


Figure 26. Test Circuit 9. OFF Isolation

Figure 27. Test Circuit 10. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

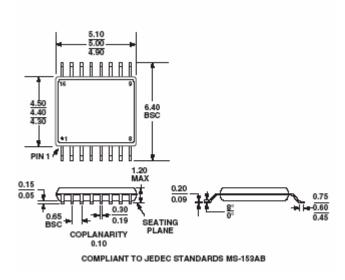


Figure 28. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)

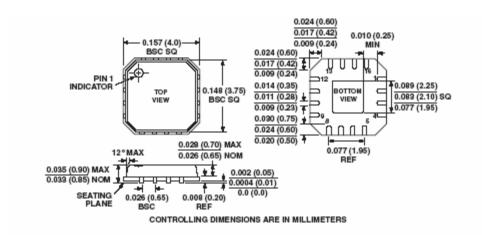


Figure 29. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4mm × 4 mm (CP-16) Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Description	Package Option
ADG1208YRU	−40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1209YRU	−40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1209YCP	−40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	CP-16
ADG1209YCP	−40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	CP-16

NOTES

NOTES

