

+5V UPSTREAM CABLE LINE DRIVER

Preliminary Technical Data

AD8328

FEATURES

Supports DOCSIS and EuroDOCSIS Standard for Reverse Path Transmission Systems

Gain Programmable in 1 dB Steps over a 59dB Range Low Distortion at 60 dBmV Output

-54 dBc SFDR at 21 MHz

- -52 dBc SFDR at 65 MHz
- Output Noise Level @ Minimum Gain 1.4nV/rtHz

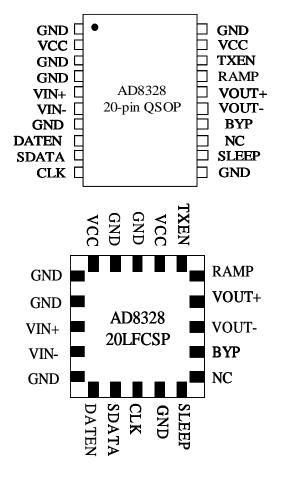
Maintains 300Ω Output Impedance

TX-Enable and Transmit-Disable Condition Upper Bandwidth: 130 MHz (Full Gain Range) 5 V Supply Operation Supports SPI Interfaces

APPLICATIONS

DOCSIS and EuroDOCSIS Cable Modems CATV Set-Top Boxes CATV Telephony Modems Coaxial and Twisted Pair line driver

GENERAL DESCRIPTION


The AD8328 is a low-cost, digitally controlled, variable gain amplifier optimized for coaxial line driving applications such as cable modems that are designed to the MCNS-DOCSIS and EuroDOCSIS upstream standard. An 8-bit serial word determines the desired output gain over a 59dB range resulting in gain changes of 1dB/LSB.

The AD8328 accepts a differential or single-ended input signal. The output is specified for driving a 75 Ω load, through a 2:1 transformer.

Distortion performance of -52~dBc is achieved with an output level up to 60~dBmV at 65~MHz bandwidth over a wide temperature range.

This device has a sleep mode function that reduces the quiescent current to 2.6mA, and a full power down function which reduces power down current to 10μ A.

The AD8328 is packaged in a low cost 20-lead LFCSP package and a 20-lead QSOP package. The AD8328 operates from a single 5V supply, and has an operational temperature range of -40° C to $+85^{\circ}$ C.

REV. PrA April 4, 2002

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002 (T_A = 25°C, V_S = 5 V, R_L = R_{IN} = 75 Ω , (using differential input) V_{IN} = 30 dBmV, V_{OUT} measured through a 2:1 transformer¹ with an insertion loss of 0.5 dB @ 10 MHz unless otherwise noted.)

AD8328-SPECIFICATIONS

Parameter	er Conditions		Тур	Max	Unit	
INPUT CHARACTERISTICS Specified AC Input Voltage Input Resistance	Output = 60 dBmV, Max Gain Single-Ended Input Differential Input		31 800 1600		dBmV Ω Ω	
Input Capacitance	•		2		pF	
GAIN CONTROL INTERFACE Voltage Gain Range Maximum Minimum Output Step Size	Gain Code = 60 Dec Gain Code = 1 Dec		59 31 -28		dB dB dB	
$T_A = -40^{\circ}C$ to $+85^{\circ}C$		0.6	1.0	1.4	dB/LSB	
OUTPUT CHARACTERISTICS Bandwidth (-3 dB) Bandwidth Roll-Off 1 dB Compression Point	All Gain Codes (0-60 decimal codes) f = 65 MHz Max Gain, f = 10 MHz 130 1.0 TBD		1.0		MHz dB dBm	
Output Noise Maximum Gain Minimum Gain Transmit Disable Noise Figure	f = 10 MHz $ f = 10 MHz $ $ f = 10 MHz $ $ Max Gain, f = 10 MHz$		160 1.4 1.4 TBD		nV/rtHz nV/rtHz nV/rtHz	
Differential Output Impedance	TX-Enable and TX-Disable		75 ± 309	6 ²	Ω	
OVERALL PERFORMANCE Second Order Harmonic Distortion $T_A = -40^{\circ}$ C to $+85^{\circ}$ C Third Order Harmonic Distortion $T_A = -40^{\circ}$ C to $+85^{\circ}$ C	$ \begin{array}{l} f = 21 \ \text{MHz}, \ P_{\text{OUT}} = 60 \ \text{dBmV} \ @Max \ \text{Gain} \\ f = 42 \ \text{MHz}, \ P_{\text{OUT}} = 60 \ \text{dBmV} \ @Max \ \text{Gain} \\ f = 65 \ \text{MHz}, \ P_{\text{OUT}} = 60 \ \text{dBmV} \ @Max \ \text{Gain} \\ f = 21 \ \text{MHz}, \ P_{\text{OUT}} = 60 \ \text{dBmV} \ @Max \ \text{Gain} \\ f = 42 \ \text{MHz}, \ P_{\text{OUT}} = 60 \ \text{dBmV} \ @Max \ \text{Gain} \\ f = 65 \ \text{MHz}, \ P_{\text{OUT}} = 60 \ \text{dBmV} \ @Max \ \text{Gain} \\ \end{array} $		-61 -61 -59 -54 -52 -52	-55 -55 -55 -50 -50 -50	dBc dBc dBc dBc dBc dBc dBc	
ACPR ³			TBD		dBc	
Isolation (Transmit Disable)	Max Gain, f = 65 MHz	-60		dBc		
POWER CONTROL TX-Enable Settling Time TX-Disable Settling Time Output Switching Transients	Max Gain, V _{IN} = 0 Max Gain, V _{IN} = 0 Equivalent Output = 31 dBmV Equivalent Output = 60 dBmV		3.5 3.5	7 50	μs μs mV p-p mV p-p	
Output SettlingMin to Max GainDue to Gain ChangeMin to Max GainDue to Input Step ChangeMax Gain, V _{IN} = 30 dBmV			TBD TBD		ns ns	
POWER SUPPLY Operating Range Quiescent Current	Maximum Gain Minimum Gain Transmit Disable, TXEN = 0 Sleep Mode (Power-Down)	4.75	5 125 24 2.6 10	5.25	V m A m A m A μA	
PERATING TEMPERATURE ANGE		-40		+85	°C	

NOTES

¹TOKO 458PT-1087 used for above specifications. ²Measured through a 2:1 transformer.

 $^{3}V_{in}$ = 30dBmV, QPSK modulation, 160ksps symbol rate

LOGIC INPUTS (TTL/CMOS Compatible Logic) (DATEN, CLK, SDATA, TXEN, SLEEP, V_{CC} = 5 V: Full Temperature Range)

Parameter	Min	Тур	Max	Unit
Logic "1" Voltage	2.1		5.0	V
Logic "0" Voltage	0		0.8	V
Logic "1" Current ($V_{INH} = 5$ V) CLK, SDATA, DATEN	0		20	nA
Logic "0" Current (V _{INL} = 0 V) CLK, SDATA, DATEN	-600		-100	nA
Logic "1" Current ($V_{INH} = 5 V$) TXEN	50		190	μA
Logic "0" Current ($V_{INL} = 0$ V) TXEN	-250		-30	μA
Logic "1" Current $(V_{INH} = 5 V)$ SLEEP	50		190	μA
Logic "0" Current $(V_{INL} = 0 V)$ SLEEP	-250		-30	μA

TIMING REQUIREMENTS (Full Temperature Range, V_{CC} = 5 V, T_R = T_F = 4 ns, f_{CLK} = 8 MHz unless otherwise noted.)

Parameter	Min	Тур	Max	Unit
Clock Pulsewidth (T _{WH})	16.0			ns
Clock Period (T _c)	32.0			ns
Setup Time SDATA vs. Clock (T _{DS})	5.0			ns
Setup Time DATEN vs. Clock (T _{ES})	15.0			ns
Hold Time SDATA vs. Clock (T _{DH})	5.0			ns
Hold Time DATEN vs. Clock (T _{EH})	3.0			ns
Input Rise and Fall Times, SDATA, DATEN, Clock (T _R , T _F)			10	ns

AD8328

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage +Vs
Pins TBD 6 V
Input Voltages
Pins TBD ±0.5 V
Pins TBD0.8 V to +5.5 V
Internal Power Dissipation
LFCSP TBD W
QSOP TBD W
Operating Temperature Range40°C to +85°C
Storage Temperature Range65°C to +150°C
Lead Temperature, Soldering 60 seconds 300°C

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

		ORDERING GUIDE
Model	Temperature Range	Package Description
AD8328ACP AD8328ACP-REEL AD8328ARQ AD8328ARQ-REEL AD8328-EVAL	-40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C	20-Lead LFCSP 20-Lead LFCSP 20-Lead QSOP 20-Lead QSOP Evaluation Board

*Thermal Resistance measured on SEMI standard 4-layer board.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8325 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN FUNCTION DESCRIPTIONS (QSOP-20 Package)

Pin No.	Mnemonic	Description	
8	DATEN	Data Enable Low Input. This port controls the 8-bit parallel data latch and shift register. A Logic 0-to-1 transition transfers the latched data to the attenuator core (updates the gain) and simultaneously inhibits serial data transfer into the register. A 1-to-0 transi- tion inhibits the data latch (holds the previous gain state) and simultaneously enables the register for serial data load.	
9	SDATA	Serial Data Input. This digital input allows for an 8-bit serial (gain) word to be loaded into the internal register with the MSB (Most Significant Bit) first.	
10	CLK	Clock Input. The clock port controls the serial attenuator data transfer rate to the 8-bit master-slave register. A Logic 0-to-1 transition latches the data bit and a 1-to-0 trans fers the data bit to the slave. This requires the input serial data word to be valid at or before this clock transition.	
1, 3, 4, 7, 11, 20	GND	Common External Ground Reference.	
2, 19 18 12	V _{CC} TXEN SLEEP	Common Positive External Supply Voltage. A 0.1 μ F capacitor must decouple each pin. Logic "0" disables forward transmission. Logic "1" enables forward transmission. Low Power Sleep Mode. In the Sleep mode, the AD8328's supply current is reduced to 1 μ A. A Logic "0" powers down the part (High Z _{OUT} State) and a Logic "1" powers up	
		the part.	
15	VOUT-	Negative Output Signal.	
16	VOUT+	Positive Output Signal.	
14	BYP	Internal Bypass. This pin must be externally ac-coupled (0.1 µF cap).	
17	RAMP	This is the external RAMP capacitor (OPTIONAL)	
5	V_{IN+}	Noninverting Input. DC-biased to approximately $V_{CC}/2$. Should be ac-coupled with a 0.1 μ F capacitor.	
6	V _{IN-}	Inverting Input. DC-biased to approximately V _{CC} /2.	