Digitally Programmable Delay Generator

FEATURES

10 ps Delay Resolution
2.5 ns to 10μ s Full-Scale Range

Fully Differential Inputs
Separate Trigger and Reset Inputs
Low Power Dissipation-310 mW
MIL-STD-883 Compliant Versions Available
APPLICATIONS
ATE
Pulse Deskewing
Arbitrary Waveform Generators
High Stability Timing Source
Multiple Phase Clock Generators

GENERAL DESCRIPTION

The AD9500 is a digitally programmable delay generator, which provides programmed delays, selected through an 8-bit digital code, in resolutions as small as 10 ps . The AD9500 is constructed in a high performance bipolar process, designed to provide high speed operation for both digital and analog circuits.

The AD9500 employs differential TRIGGER and RESET inputs which are designed primarily for ECL signal levels but function with analog and TTL input levels. An onboard ECL reference midpoint allows both of the inputs to be driven by either single ended or differential ECL circuits. The AD9500 output is a complementary ECL stage, which also provides a $\overline{Q_{R}}$ parallel output circuit to facilitate reset timing implementations.

The digital control data is passed to the AD9500 through a transparent latch controlled by the LATCH ENABLE signal. In the transparent mode, the internal DAC of the AD9500 will attempt to follow changes at the inputs. The LATCH ENABLE is otherwise used to strobe the digital data into the AD9500 latches.
The AD9500 is available as an industrial temperature range device, $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and as an extended temperature range device, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Both grades are packaged in a 24 -lead cerdip ($0.3^{\prime \prime}$ package width), as well as 28 -leaded and leadless surface mount packages. The AD9500 is available in versions compliant with MIL-STD-883. Refer to the Analog Devices Military Products Databook or current AD9500/883B data sheet for detailed specifications.

REV. D

[^0]
FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703
© Analog Devices, Inc., 1999

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$		Digital Output Current ($\overline{\mathrm{Q}_{\mathrm{R}}}$)	2 mA
Positive Supply Voltage ($+\mathrm{V}_{\mathrm{S}}$)	+7 V	Offset Adjust Current (Sinking)	4 mA
Negative Supply Voltage ($-\mathrm{V}_{S}$)	-7 V	Operating Temperature Range	
ECL COMMON to Ground Differential	-2.0 V to +5.0 V	AD9500BP/BQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Digital Input Voltage Range	-3.5 V to +5.0 V	AD9500TE/TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Trigger/Reset Input Voltage Range	$\pm 5.0 \mathrm{~V}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Trigger/Reset Differential Voltage	.5.0 V	Junction Temperature	$+175^{\circ} \mathrm{C}$
Minimum $\mathrm{R}_{\text {SET }}$	220Ω	Lead Soldering Temperature (10 sec)	$+300^{\circ} \mathrm{C}$
Digital Output Current (Q and $\overline{\mathrm{Q}}$)	30 mA		

ELECTRICAL CHARACTERISTICS²

(Supply Voltages $+V_{S}=+5.0 \mathrm{~V}, \mathrm{~V}_{S}=-5.2 \mathrm{~V} ; \mathrm{C}_{\mathrm{EXT}}=0 \mathrm{pF} ; \mathrm{R}_{\mathrm{SET}}=500 \Omega$ unless otherwise noted)

Parameter	Test Level	Temp	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { AD9500BP/BQ } \end{aligned}$			$\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { AD } 9500 \mathrm{TE} / \mathrm{TQ} \end{gathered}$			Units
			Min	Typ	Max	Min	Typ	Max	
SUPPORT FUNCTIONS									
ECL ReF	IV	$+25^{\circ} \mathrm{C}$	-1.4	-1.3	-1.2	-1.4	-1.3	-1.2	V
ECL $_{\text {REF }}$ Voltage Drift ${ }^{14}$	V	Full		1.1			1.1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Offset Adjust Range	V	Full		-2			-2		mA
DIGITAL OUTPUTS ${ }^{7}$									
Logic "1" Voltage	VI	Full	-1.1			-1.1			V
Logic "0" Voltage	VI	Full			-1.5			-1.5	V
POWER SUPPLY ${ }^{15}$									
Positive Supply Current (+5.0 V)	I	$+25^{\circ} \mathrm{C}$		24	28		24	28	mA
	VI	Full			30			30	mA
Negative Supply Current (-5.2 V)	I	$+25^{\circ} \mathrm{C}$		37	42		37	42	mA
	VI	Full			44			44	mA
Nominal Power Dissipation	V	$+25^{\circ} \mathrm{C}$		312			312		mW
Power Supply Rejection Ratio ${ }^{16}$									
Full-Scale Range Sensitivity	I	$+25^{\circ} \mathrm{C}$		70	300		70	300	ps/V
Minimum Propagation Delay Sensitivity	I	$+25^{\circ} \mathrm{C}$		150	500		150	500	ps/V

NOTES

${ }^{1}$ Absolute maximum ratings are limiting values, to be applied individually, and beyond which serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Typical thermal impedance

$$
\begin{array}{ll}
\text { 24-Lead Cerdip } & \theta_{\mathrm{JA}}=56^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=16^{\circ} \mathrm{C} / \mathrm{W} \\
\text { 28-Leadless PLCC (Plastic) } & \theta_{\mathrm{JA}}=60^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=22^{\circ} \mathrm{C} / \mathrm{W} \\
\text { 28-Leaded Ceramic LCC } & \theta_{\mathrm{JA}}=69^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=25^{\circ} \mathrm{C} / \mathrm{W}
\end{array}
$$

${ }^{3} \mathrm{R}_{\text {SET }}=10 \mathrm{k} \Omega$ (Full-scale delay $=100 \mathrm{~ns}$).
${ }^{4}$ The digital data inputs must remain stable for the specified time prior to the LATCH ENABLE signal.
${ }^{5}$ The digital data inputs must remain stable for the specified time after the LATCH ENABLE signal.
${ }^{6}$ The TRIGGER and RESET inputs are differential and must be driven relative to one another. Both of these inputs are ECL compatible, but can also be used with TTL logic families in a limited fashion.
${ }^{7}$ Outputs terminated through 50Ω resistors to -2.0 V .
${ }^{8}$ Program Delay $=0.0 \mathrm{ps}$ (Digital Data $=00_{\mathrm{H}}$). In Operation, any programmed delays are in addition to the Minimum Propagation Delay.
${ }^{9}$ Change in total delay through AD9500, exclusive of changes in minimum propagation delay t_{PD}.
${ }^{10}$ Measured from the 50% transition point of the reset signal input, to the 50% transition point of the resetting output.
${ }^{11}$ Minimum time from falling edge of RESET to triggering input, to ensure a valid output event.
${ }^{12}$ Minimum time from triggering event to rising edge of RESET, to ensure a valid output event.
${ }^{13}$ Measured from the LATCH ENABLE input to the point when the AD9500 becomes 8 -bit accurate again, after a full-scale change in the programmed delay.
${ }^{14}$ Standard 10 K and 10 KH ECL families operate with a $1.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ drift by design.
${ }^{15}$ Supply voltages should remain stable within $\pm 5 \%$ for normal operation.
${ }^{16}$ Measured at $\pm 5 \%$ of $-V_{S}$ and $+V_{S}$.
Specifications subject to change without notice.

EXPLANATION OF TEST LEVELS

Test Level

I - 100% production tested.
II - 100% production tested at $+25^{\circ} \mathrm{C}$, and sample tested at specified temperatures.
III - Periodically sample tested.
IV - Parameter is guaranteed by design and characterization testing.

V - Parameter is a typical value only.
VI - All devices are 100% production tested at $+25^{\circ} \mathrm{C} .100 \%$ production tested at temperature extremes for extended temperature devices; sample tested at temperature extremes for commercial/industrial devices.

ORDERING GUIDE

Model	Temperature Ranges	Package Descriptions	Package Options
AD9500BP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Leadless PLCC (Plastic), Industrial Temperature	$\mathrm{P}-28 \mathrm{~A}$
AD9500BQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead Cerdip, Industrial Temperature 28-Leaded LCC, Extended Temperature 24-Lead Cerdip, Extended Temperature	$\mathrm{Q}-24$
AD9500TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{A}$		

PIN FUNCTION DESCRIPTIONS

Pin Name	Description
$\mathrm{D}_{4}-\mathrm{D}_{6}$	One of eight digital inputs used to set the programmed delay.
D_{7} (MSB)	One of eight digital inputs used to set the programmed delay. D_{7} (MSB) is the most significant bit of the digital input word.
ECL LeF	ECL midpoint reference, nominally -1.3 V . Use of the ECL $_{\text {REF }}$ allows either of the TRIGGER or RESET inputs to be configured for single-ended ECL inputs.
OFFSET ADJUST	The OFFSET ADJUST is used to adjust the minimum propagation delay (t_{PD}), by pulling or pushing a small current out of or into the pin.
$\mathrm{C}_{\text {S }}$	C_{S} allows the full-scale range to be extended by using an external timing capacitor. The value of $\mathrm{C}_{\mathrm{EXT}}$, connected between C_{S} and $+\mathrm{V}_{\mathrm{S}}$, may range from no external capacitance to $0.1 \mu \mathrm{~F}+$. $\text { See } R_{S}\left(C_{\text {INTERNAL }}=10 \mathrm{pF}\right) \text {. }$
$+\mathrm{V}_{\text {S }}$	Positive supply terminal, nominally +5.0 V .
TRIGGER	Noninverted input of the edge-sensitive differential trigger input stage. The output at Q will be delayed by the programmed delay, after the triggering event. The programmed delay is set by the digital input word. The TRIGGER input must be driven in conjunction with the TRIGGER input.
$\overline{\text { TRIGGER }}$	Inverted input of the edge-sensitive differential trigger input stage. The output at Q will be delayed by the programmed delay, after the triggering event. The programmed delay is set by the digital input word. The TRIGGER input must be driven in conjunction with the TRIGGER input.
$\overline{\text { RESET }}$	Inverted input of the level-sensitive differential reset input stage. The output at Q will be reset after a signal is received at the reset inputs. In the "minimum configuration," the minimum output pulsewidth will be equal to the "reset propagation delay," t_{RD}. The RESET input must be driven in conjunction with the RESET input.
RESET	Noninverted input of the level-sensitive differential reset input stage. The output at Q will be reset after a signal is received at the reset inputs. In the "minimum configuration," the minimum output pulsewidth will be equal to the "reset propagation delay," $t_{\text {RD }}$. The RESET input must be driven in conjunction with the RESET input.
Q	One of two complementary ECL outputs. A "triggering" event at the inputs will produce a logic HIGH on the Q output. A "resetting" event at the inputs will produce a logic LOW on the Q output.
$\overline{\mathrm{Q}}$	One of two complementary ECL outputs. A "triggering" event at the inputs will produce a logic LOW on the $\overline{\mathrm{Q}}$ output. A "resetting" event at the inputs will produce a logic HIGH on the $\overline{\mathrm{Q}}$ output.
$\overline{\mathrm{Q}_{\mathrm{R}}}$	$\overline{\mathrm{Q}_{\mathrm{R}}}$ output is parallel to the $\overline{\mathrm{Q}}$ output. The $\overline{\mathrm{Q}_{\mathrm{R}}}$ output is typically used to drive delaying circuits for extending output pulsewidths. A "triggering" event at the inputs will produce a logic LOW on the $\overline{\mathrm{Q}_{\mathrm{R}}}$ output. A "resetting" event at the inputs will produce a logic HIGH on the $\overline{\mathrm{Q}_{\mathrm{R}}}$ output.
ECL COMMON	The collector common for the ECL output stage. The collector common may be tied to +5.0 V , but normally it is tied to the circuit ground for standard ECL outputs.
$-\mathrm{V}_{\text {S }}$	Negative supply terminal, nominally -5.2 V .
$\mathrm{R}_{\text {S }}$	R_{S} is the reference current setting terminal. An external setting resistor, $R_{S E T}$, connected between R_{S} and $-\mathrm{V}_{\mathrm{S}}$ determines the internal reference current. See $\mathrm{C}_{\mathrm{S}}\left(250 \Omega \leq \mathrm{R}_{\mathrm{SET}} \leq 50 \mathrm{k} \Omega\right)$.
GROUND	The ground return for the TTL and analog inputs.
LATCH ENABLE	Transparent TTL latch control line. A logic HIGH on the LATCH ENABLE freezes the digital code at the logic inputs. A logic LOW on the LATCH ENABLE allows the internal current levels to be continuously updated through the logic inputs D_{0} thru D_{7}.
$\mathrm{D}_{0}(\mathrm{LSB})$	One of eight digital inputs used to set the programmed delay. D_{0} (LSB) is the least significant bit of the digital input word.
$\mathrm{D}_{3}-\mathrm{D}_{1}$	One of eight digital inputs used to set the programmed delay.

t_{s} - DIGITAL DATASETUPTIME
t_{H} - DIGITALDATA HOLD TIME
$t_{\text {LPW }}$ - LATCHENABLEPULSE WIDTH
t_{DAC} - INTERNAL DAC SETTLING TIME
$\mathbf{t}_{\text {PD }}$ - MINIMUM PROPAGATION DELAY
$t_{\text {RD }}$ - RESET PROPAGATION DELAY
t_{D} - PROGRAMMED DELAY
$t_{\text {TPW }}$ - TRIGGER PULSE WIDTH
thpw - RESETPULSE WIDTH
$t_{\text {THO }}$ - RESET-TO-TRIGGER HOLDOFF
$\mathbf{t}_{\text {RHO }}$ - TRIGGER-TO-RESET HOLDOFF

NOTE
A TRIGGERING EVENT MAY OCCUR AT ANY TIME WHILE THE INTERNAL DAC (PROGRAMMED DELAY) IS BEING CHANGED. TRIGGERING EVENTS DURING THE INTERNAL DAC SETTLING TIME MAY NOT GENERATE AN ACCURATEPULSE DELAY.

Figure 1. System Timing Diagram

DIE LAYOUT

MECHANICAL INFORMATION

Die Dimensions $104 \times 103 \times 18(\max)$ mils Pad Dimensions . $4 \times 4(\mathrm{~min})$ mils Metalization . Aluminum Backing . None
Substrate Potential . - V $_{\text {S }}$
Passivation . Oxynitride
Die Attach . Gold Eutectic
Bond Wire 1.25 mil, Aluminum; Ultrasonic Bonding or 1 mil, Gold; Gold Ball Bonding

Figure 2. Input/Output Circuits

INSIDE THE AD9500

The heart of the AD9500 is the linear ramp generator. A triggering event at the input of the AD9500 initiates the ramp cycle. As the ramp voltage falls, it will eventually go below the threshold set up by the internal DAC (digital-to-analog converter). A comparator monitors both the linear ramp voltage and the DAC threshold level. The output of the comparator serves as the output for the AD9500, and the interval from the trigger until the output switches is the total delay time of the AD9500.
The total delay through the AD9500 is made up of two components. The first is the full-scale programmed delay, $\mathrm{t}_{\mathrm{D}(\max)}$, determined by $\mathrm{R}_{\text {SET }}$ and $\mathrm{C}_{\text {EXT }}$. The second component of the total delay is the minimum propagation delay through the AD9500 (t_{PD}). The full-scale delay is variable from 2.5 ns to greater than 1 ms . The internal DAC is capable of generating 256 separate programmed delays within the full-scale range (this gives 10 ps increments for a 2.5 ns full-scale setting).

The actual programmed delay is directly related to both the digital control data (digital data to the internal DAC) and the RC time constant established by $\mathrm{R}_{\mathrm{SET}}$ and $\mathrm{C}_{\mathrm{EXT}}$. The specific relationship is as follows:
Total Delay $=$ Minimum Propagation Delay + Programmed Delay
$=t_{\text {PD }}+($ digital value $/ 256) \mathrm{R}_{\mathrm{SET}}\left(\mathrm{C}_{\mathrm{EXT}}+10 \mathrm{pF}\right)$

Figure 3. Typical Programmed Delay Ranges
The internal DAC determines the programmed delay by way of the threshold level at its output. The LATCH ENABLE control for the onboard latch is active (latches) logic "HIGH." In the logic "LOW" state, the latch is transparent, and the internal DAC will attempt to follow changes at the digital data inputs. Both the LATCH ENABLE control and the data inputs are TTL compatible. The internal DAC may be updated at any time, but full timing accuracy may not be attained unless triggering events are held off until after the DAC settling time ($\mathrm{t}_{\mathrm{DAC}}$).

Figure 4. Internal Timing Diagram
On resetting, the ramp voltage held in the timing capacitor $\left(\mathrm{C}_{\mathrm{EXT}}+10 \mathrm{pF}\right)$ is discharged. The AD9500 discharges the bulk of the ramp voltage very quickly, but to maintain absolute accuracy, subsequent triggering events should be held off until after the linear ramp settling time ($\mathrm{t}_{\mathrm{LRS}}$). Applications which employ high frequency triggering at a constant rate will not be affected by the slight settling errors since they will be constant for fixed reset-to-trigger cycles.
The RESET and TRIGGER inputs of the AD9500 are differential and must be driven relative to one another. Accordingly, the TRIGGER and RESET inputs are ideally suited for analog or complementary input signals. Single-ended ECL input signals can be accommodated by using the ECL midpoint reference ($\mathrm{ECL}_{\mathrm{REF}}$) to drive one side of the differential inputs.
The output of the AD 9500 consists of both Q and $\overline{\mathrm{Q}}$ driver stages, as well as the $\overline{\mathrm{Q}_{\mathrm{R}}}$ output which is used primarily for extending the output pulsewidth. In the most direct reset configuration, either the Q or the $\overline{\mathrm{Q}}$ output is tied to the respective RESET input. This generates a delayed output pulse with a duration equal to the reset delay time (t_{RD}) of approximately 6 ns . Note that the reset delay time (t_{RD}) becomes extended for very small programmed delay settings. The duration of the output pulse can be extended by driving the reset inputs with the $\overline{\mathrm{Q}_{\mathrm{R}}}$ output through an RC network (see "Extended Output Pulsewidth" application). Using the $\overline{\mathrm{Q}_{\mathrm{R}}}$ output to drive the reset circuit avoids loading the Q or $\overline{\mathrm{Q}}$ outputs.
Values in the specification table are based on 5 ns FSR test conditions. Nearly all dynamic specifications degrade for longer full scales. For details of performance change, request the application note "Using Digitally Programmable Delay Generators."

APPLICATIONS

The AD9500 is a very versatile device that is not difficult to use. Essentially there are only a few basic configurations which can be extended into a number of applications. The TRIGGER and RESET inputs of the AD9500 can be treated as single ended, or as differential, which allows the AD9500 to operate with a wide range of signal sources. The output pulse from the AD9500 can be reset in one of two ways, either immediately by driving the RESET inputs with the output itself, or in a delayed mode.

MINIMUM CONFIGURATION

The minimum configuration uses only one of the TRIGGER inputs. The other is connected to the ECL reference midpoint, ECL ReF . This allows the AD9500 to be triggered with standard 10 K or 10 KH ECL signals. Once a triggering event occurs, the Q output will go into the logic HIGH state, and the $\overline{\mathrm{Q}}$ output will go into the logic LOW state after the programmed delay. The Q output is then used to drive the RESET input, causing the AD9500 to reset itself. The result is a delayed output pulse which is only as wide as the reset propagation delay (t_{RD}).

Figure 5. Single Input-Minimum Timing Configuration

EXTENDED OUTPUT PULSEWIDTHS

The extended pulse configuration is similar to the minimum configuration. The difference here is that the output pulsewidth has been extended. Operation is identical in terms of triggering the AD 9500 ; the functional difference is in the resetting circuit. In this case the $\overline{\mathrm{Q}_{\mathrm{R}}}$ output is used to drive the $\overline{\mathrm{RESET}}$ input through a resistor/capacitor charging network. The charging network will cause the signal at the RESET input to fall more slowly, which will extend the output pulsewidth. An added benefit of the extended pulsewidth configurations is that both
the Q and the $\overline{\mathrm{Q}}$ outputs are completely free for other uses. $\overline{\mathrm{Q}}$ has limited current drive; the minimum resistance for R_{D} should be $4 \mathrm{k} \Omega$.

Figure 6. Extended Output Pulsewidth Configuration

MULTICHANNEL DESKEWING

Perhaps the most appropriate use of the AD9500 is in multiple delay matching applications. Slight differences in impedance and cable length can create large timing skews within a highspeed system. Much of this skew can be eliminated by running each signal through an AD9500. With one line used as a standard, the programmed delays of the other AD9500s are adjusted to eliminate the timing skews. With the very fine timing adjustments possible from the AD9500 (as small as 10 ps), nearly any high-speed system should be able to automatically adjust itself to extremely tight tolerances.

Figure 7. Multiple Delay Matching

MEASURING UNKNOWN DELAYS

Two AD9500s can be combined to measure delays with a high degree of precision. One AD9500 is set with little or no programmed delay, and its output is used to drive the unknown delay circuit, which in turn drives the input of a " D " type flipflop. The second AD9500 is triggered along with the first, and its output provides a clocking signal for the flip-flop. The programmed delay of the second AD9500 is then varied to detect the output edge from the unknown delay circuit.
Detecting the output edge is relatively straightforward. If the programmed delay through the second AD9500 is too long, the flip-flop output will be at logic HIGH. If, on the other hand, the programmed delay through the second AD9500 is too short, the flip-flop output will be at logic LOW. When the programmed delay is properly adjusted, the flip-flop will likely bounce between logic HIGH and logic LOW. The digital code value used to create the second programmed delay is a direct indication of the delay through the unknown circuit. The most accurate results can only be attained by calibrating the system without the unknown delay circuit in place.

Figure 8. Measuring Unknown Delays

MEASURING HIGH SPEED AC WAVEFORMS

The same circuitry used to measure unknown delays can be extended to measure the time response of high speed ac waveforms. With the addition of a digital-to-analog converter and an analog comparator, the circuit functions very much like the previous application. The DAC sets a threshold level which drives one of the differential comparator inputs. The other comparator input is driven by the device under test (DUT). The output of the first AD9500 causes the DUT to produce an output. The second AD9500, which is also triggered along with the first AD9500, strobes the comparator latch enable.
If the DUT output is greater than the DAC threshold when the comparator is latched, the comparator output will be at logic HIGH. If the output is below the DAC threshold, the comparator will be at logic LOW. The programmed delay setting of the second AD9500 is adjusted to the point where the DUT output
equals the DAC threshold. By varying the DAC threshold level and adjusting the second AD9500 programmed delay, a point by point reconstruction of the ac waveform can be created.

Figure 9. Measuring AC Waveforms

PROGRAMMABLE OSCILLATOR

Another interesting use of the AD9500 is in a digitally programmable oscillator. The highly accurate delays generated by the AD9500 can be exploited to create a ring oscillator with variable duty cycle. The delayed output of the first AD9500 is used to drive the TRIGGER input of the second AD9500. The output of the second AD9500, in turn, is used to drive the TRIGGER input of the first AD9500. Together the two devices will alternately trigger each other creating two pulse chains on the outputs.
The total delay through both AD9500s combined, determines the period of the oscillation frequency. The duty cycle can be controlled by using the outputs to drive the SET and RESET inputs of a flip-flop. The total delay through the first AD9500 will control the flip-flop logic LOW output pulsewidth, and the second AD9500 will control the flip-flop logic HIGH output pulsewidth.

Figure 10. Ring Oscillator

AD9500

LAYOUT CONSIDERATIONS

The AD9500 is a precision timing device, and as such high frequency design techniques must be employed to achieve the best performance. The use of a low impedance ground plane is particularly important. Ideally the ground plane should be on the component side of the layout and extend under the AD9500, to shield it from system timing signals. Sockets pose a special problem for a circuit like the AD9500 because of the additional inter-lead capacitance they create. If sockets must be used, pin sockets are generally preferred. Power supply decoupling is also critical to a high-speed design; a $0.1 \mu \mathrm{~F}$ ceramic capacitor and a $0.01 \mu \mathrm{~F}$ mica capacitor for both power supplies should be very effective. DAC threshold stability can be improved by decoupling the OFFSET ADJUST pin to +5.0 V (note that this will lengthen the DAC settling time, $\mathrm{t}_{\mathrm{DAC}}$)

DELAY OFFSET ADJUSTMENTS

As the full-scale delay is increased, a component of the minimum propagation delay also increases. This is caused by the additional time required by the ramp (now with a much "flatter" slope) to fall below the DAC threshold corresponding to the minimum propagation delay (t_{PD}). One means of decreasing the minimum propagation delay (when the full-scale delay, set by $\mathrm{R}_{\text {SET }}$ and $\mathrm{C}_{\text {EXT }}$ is large) is to offset the internal DAC threshold toward the initial ramp levels, thus reducing the time for the internal ramp to cross the threshold once the AD9500 is triggered.

Figure 11. The Offset Adjust Pin Can Be Used to Match Several AD9500s
The DAC levels are offset toward the initial ramp level by injecting a small current into the offset adjust pin. Note, however, that the ramp start-up region is less linear than the later portions of the ramp, which is the primary reason for the built-in offset. If the minimum propagation delay is kept above 5 ns (the linear portion of the ramp), no significant degradation in linearity should result. This concept can be extended to match the actual propagation delays of several AD9500s, by injecting or sinking a small current ($<2 \mathrm{~mA}$) into or out of each of the OFFSET ADJUST pins.

GENERAL PERFORMANCE ENHANCEMENTS

High speed operation is generally more consistent if $\mathrm{C}_{\text {EXT }}$ is kept small (i.e., no external capacitor) to maintain small discharge time constants. Integral linearity, however, benefits from larger values of $\mathrm{C}_{\mathrm{EXT}}$ by buffering small system spikes and surges. Another means of improving integral linearity is to draw a small current $(\approx 200 \mu \mathrm{~A})$ out of the OFFSET ADJUST pin with a $47 \mathrm{k} \Omega$ pull-down resistor. This has the effect of moving the internal DAC reference levels into a relatively more linear region of the ramp. This technique is generally only useful for small full-scale delay configurations. Its use with larger full-scale delays will extend the minimum propagation delay (t_{PD}). A pullup resistor to +5.0 V creates the opposite effect by reducing the minimum propagation delay (t_{PD}) at the expense of increased reset propagation delay (t_{RD}) and degraded linearity (see OFFSET matching circuit).
Caution should be used when applying high slew rate data at the inputs of the AD9500. For data inputs with slew rates in excess of $1 \mathrm{~V} / \mathrm{ns}$, a 100Ω series resistor should be utilized in the data path.
An external DAC can be used with the AD9500 for increased resolution and higher update rates. For the most part, a standard ECL DAC, operating between +5.0 V and ground, should work with the AD9500. The output of the external DAC must be connected to the OFFSET ADJUST pin of the AD9500 with the internal DAC turned off (D_{0} thru D_{7} at logic LOW). For normal operation, the external DAC output should range from 0 mA to -2 mA (sinking).

Figure 12. Operation with External DAC

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

24-Lead Cerdip
 (Q-24)

28-Leaded LCC
(E-28A)

28-Leadless PLCC
(P-28A)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

