Preliminary Technical Data

FEATURES

- 256-Position
- End-to-End Resistance 5k, 10k, 50k, 100k Ω
- Compact SOT23-8 (2.9 x 3mm) Package
- SPI Compatible Interface
- Power ON Reset to Midscale
- Single Supply +2.7V to +5.5V
- Low Temperature Coefficient $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Low power, $I_{D D}=5 \mu \mathrm{~A}$
- Wide Operating Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Applications

- Mechanical Potentiometer Replacement in new designs
- Transducer Adjustment of pressure, temperature, position, chemical and optical sensors
- RF Amplifier biasing
- Automotive Electronics Adjustment
- Gain Control and Offset Adjustment

GENERAL DESCRIPTION

The AD5160 provides a compact $2.9 \times 3 \mathrm{~mm}$ packaged solution for 256-position adjustment applications.
This device performs the same electronic adjustment function as a mechanical potentiometer or a variable resistor. Available in four different end-to-end resistance values (5k, 10k, 50k, 100k Ω) these low temperature coefficient devices are ideal for high accuracy and stability variable resistance adjustments.
The wiper settings are controllable through the SPI compatible digital interface. The resistance between the wiper and either end point of the fixed resistor varies linearly with respect to the digital code transferred into the RDAC latch ${ }^{1}$. Operating from a 2.7 to 5.5 volt power supply consuming less than $5 \mu \mathrm{~A}$ allows for usage in portable battery operated applications.

Notes:

1. The terms digital potentiometers, VR, and RDAC are used interchangeably.

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.
Fax: 781/326-8703

256 Position Digital Potentiometer

AD5160 ELECTRICAL CHARACTERISTICS 5K, 10K, 50K, 100K Ω VERSION $\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%\right.$, or

 $+3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{A}}=+\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$ unless otherwise noted.)

NOTES:

1. Typicals represent average readings at $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{D D}=+5 \mathrm{~V}$.
2. Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.
3. $\quad \mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{DD}}$, Wiper $\left(\mathrm{V}_{\mathrm{W}}\right)=$ No connect
4. INL and DNL are measured at V_{W} with the RDAC configured as a potentiometer divider similar to a voltage output D / A converter. $V A=V_{D D}$ and $V_{B}=0 V$.

DNL specification limits of ± 1 LSB maximum are Guaranteed Monotonic operating conditions.
5. Resistor terminals A, B, W have no limitations on polarity with respect to each other.
6. Guaranteed by design and not subject to production test.
7. Measured at the A terminal. A terminal is open circuited in shutdown mode.
8. PDISS is calculated from ($I_{D D} \times V_{D D}$). CMOS logic level inputs result in minimum power dissipation
9. All dynamic characteristics use $V_{D D}=+5 \mathrm{~V}$.
10. See timing diagram for location of measured values. All input control voltages are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2 \mathrm{~ns}(10 \%$ to 90% of $+3 \mathrm{~V})$ and timed from a voltage level of 1.5 V . Switching characteristics are measured using $\mathrm{V}_{\text {LOGIC }}=+5 \mathrm{~V}$.
11. The AD5160 contains 2532 transistors. Die Size: 30.7 mil $x 76.8$ mil, 2358 sq. mil.
12. See timing diagram for location of measured values.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5160 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended

to avoid performance degradation or loss of functionality.

256 Position Digital Potentiometer

ABSOLUTE MAXIMUM RATINGS ${ }^{1}\left(\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless
otherwise noted)
$V_{D D}$ to GND ... $0.3,+7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$ to GND .. V_{DD}

Digital Inputs \& Output Voltage to GND.............. $0 \mathrm{~V},+7 \mathrm{~V}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature ($\mathrm{T}_{\mathrm{J} \text { max }}$).............. $+150^{\circ} \mathrm{C}$
Storage Temperature............................. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Thermal Resistance ${ }^{3} \theta_{\mathrm{JA}}$,
SOT23-8 ... $230^{\circ} \mathrm{C} / \mathrm{W}$
\section*{NOTES}
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance
3. Package Power Dissipation ($\left.\mathrm{T}_{\mathrm{Jmax}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$

ORDERING GUIDE

Model\#	$R_{\text {AB }}$ (Ω)	Package Description	Package Option	Brand
AD5160BRJ5	5 K	SOT23-8	RJ-8	D08
AD5160BRJ10	10 K	SOT23-8	RJ-8	D09
AD5160BRJ50	50 K	SOT23-8	RJ-8	D0A
AD5160BRJ100	100 K	SOT23-8	RJ-8	D0B

256 Position Digital Potentiometer

TABLE 1: AD5160 Serial-Data Word Format

B7	B6	B5	B4	B3	B2	B1	B0
D7	D6	D5	D4	D3	D2	D1	D0
MSB							LSB
2^{7}							2^{0}

Figure 1A. AD5160 Timing Diagram $\left(V_{A}=5 V, V_{B}=O V, V_{W}=\right.$ $V_{\text {out }}$)

Figure 1B. Detail Timing Diagram $\left(V_{A}=5 V, V_{B}=0 V, V_{W}=V_{\text {OUT }}\right)$

Pin	Name	Description
1	V_{W}	W Terminal
2	$V_{D D}$	Positive Power Supply
3	GND	Ground
4	CLK	Serial Clock Input, positive edge 5
SDI	Seriggered Data Input	
6	$\overline{C S}$	Chip Select Input, Active Low. When
		CS returns high, data will be loaded
7	V_{B}	into the DAC register.
8	V_{A}	B Terminal

PIN CONFIGURATION

OUTLINE DIMENSIONS

8-Lead Plastic Surface-Mount Package [SOT-23]
RJ-8
Dimensions shown in millimeters

