FEATURES

Two Differential Analog Input Channels Product Functions

Product of Two Channels

Voltage-to-Frequency Conversion
Real Power Measurement Capability
< 0.3\% Error Overrange 400\% Ibasic to 2\% Ibasic

The AD7750 is a Product-to-Frequency Converter (PFC) that can be configured for power measurement or voltage-tofrequency conversion. The part contains the equivalent of two channels of A/D conversion, a multiplier, a digital-to-frequency converter, a reference and other conditioning circuitry. Channel one has a differential gain amplifier with selectable gains of 1 or 16. Channel two has a differential gain amplifier with a gain of 2. A high-pass filter can be switched into the signal path of one channel to remove any offsets.
The outputs F1 and F2 are fixed width (275 ms) logic low going pulse streams for output frequencies less than 1.8 Hz . A range of output frequencies is available and the frequency of F1 and F2 is proportional to the product of V_{1} and V_{2}. These outputs are suitable for directly driving an electromechanical pulse counter or full stepping two phase stepper motors. The outputs can be configured to represent the result of four-quadrant multiplication (i.e., Sign and Magnitude) or to represent the result of a two quadrant multiplication (i.e., Magnitude Only). In this configuration the outputs are always positive regardless of the input polarities. In addition, there is a reverse polarity indicator output that becomes active when negative power is detected in the Magnitude Only Mode, see Reverse Polarity Indicator.
The error as a percent (\%) of reading is less that 0.3% over a dynamic range of 200:1.
The AD7750 is fabricated on 0.6μ CMOS technology; a process that combines low power and low cost.

[^0]FUNCTIONAL BLOCK DIAGRAM

3. There is a reverse-indicator output that becomes active when negative power is detected in the Magnitude Only Mode.
4. Error as a \% of reading over a dynamic range of $500: 1$ is < 0.5%.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700
Fax: 617/326-8703 World Wide Web Site: http://www.analog.com © Analog Devices, Inc., 1997

AD7750-SPFCIFICATIONS $\left(V_{D D}=5 \mathrm{~V} \pm 5 \%, \operatorname{AGND}=0 \mathrm{~V}, \mathrm{DGND}=0 \mathrm{~V}, \operatorname{REFIN}=+2.5 \mathrm{~V}, \mathrm{CLKIN}=3.58 \mathrm{MHz}\right.$
 $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

	B Version $-\mathbf{4 0} \mathbf{C}$ to $+85^{\circ} \mathrm{C}$	Units	
Parameter			Test Conditions/Comments
POWER SUPPLY	4.75	V min	For Specified Performance
V_{DD}	5.25	$\mathrm{~V} \max$	$5 \mathrm{~V}-5 \%$
I_{DD}	5	$\mathrm{~V}+5 \%$	

NOTES
${ }^{1}$ See plots in Typical Performance Graphs.
${ }^{2}$ External current amplification/drive should be used if higher current source and sink capabilities are required, e.g., bipolar transistor.
All specifications subject to change without notice.

AD7750 TIMING CHARACTERISTICS ${ }^{1,2} \quad$| $\left(\mathrm{V}_{D D}=5 \mathrm{~V}, \operatorname{AGND}=0 \mathrm{~V}, \operatorname{DVDD}=0 \mathrm{~V}\right.$, REFIN $=$ REFOUT. All specifications |
| :--- |
| $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted. $)$ |

Commercial (B Version) $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature . $+150^{\circ} \mathrm{C}$
*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Options
AD7750BN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20-Lead Plastic DIP	$\mathrm{N}-20$
AD7750BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Wide Body SOIC	R-20

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD7750 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

SOIC and DIP

Figure 1. PSR as a Function of $V_{D D} 50 \mathrm{~Hz}$ Ripple

Figure 2. Phase Error as a Function of Line Frequency

Figure 4. Exror as a Percentage (\%) of Reading Over a
Dynamic Rarige of 1 GQ0 Gain $=1$

Figure 6. Measurement Error vs. Input Signal Level and Varying VDD with Channel 1, Gain = 1

Figure 7. Measurement Error vs. Input Signal Level and Varying $V_{D D}$ with Channel 1, Gain $=16$

ANALOG INPUTS

The analog inputs of the AD7750 are high impedance bipolar voltage inputs. The four voltage inputs make up two truly differential voltage input channels called V_{1} and V_{2}. As with any ADC, an antialiasing filter or low-pass filter is required on the analog input. The AD7750 is designed with a unique switched capacitor architecture that allows a bipolar analog input with a single 5 V power supply. The four analog inputs $\left(\mathrm{V}_{1+}, \mathrm{V}_{1-}, \mathrm{V}_{2+}, \mathrm{V}_{2-}\right)$ each have a voltage range from -1.0 V to +1.0 V . This is an absolute voltage range and is relative to the ground (AGND) pin. This ground is nominally at a potential of 0 V relative to the board level ground. Figure 8 shows a very simplified diagram of the analog input structure. When the analog input voltage is sampled, the switch is closed and a very small sampling capacitor is charged up to the input voltage. The resistor in the diagram can be thought of as a lumped componende po of the on resistance of various switches.
 power supply rails are 0 V to 5 V , the analog inputs canno longer be clamped to the supply rails by diodes. Thus, the internal protection circuitry monitors the current paths during a fault condition and protects the device from continuous overvoltage, continuous undervoltage and ESD events. The maximum overvoltage the AD7750 analog inputs can withstand without causing irreversible damage is $\pm 6 \mathrm{~V}$ relative to GND pin.
In the case of continuous overvoltage and undervoltage the series resistance of the antialiasing filter can be used to limit input current. The total input current in the case of a fault should be limited to 10 mA .
For normal operation of the AD7750 there are two further restrictions on the signal levels presented to the analog inputs.

1. The voltage on any input relative to the AGND pin must not exceed $\pm 1 \mathrm{~V}$.
2. The differential voltage presented to the ADC (Analog Modulator) must not exceed $\pm 2 \mathrm{~V}$.

In Figure 12, Channel 1 has a peak voltage on V_{1+} and V_{1-} of $\pm 1 \mathrm{~V}$. These signals are not gained $(\mathrm{G} 1=0)$ and so the differential signal presented to the modulator is $\pm 2 \mathrm{~V}$. However, Channel 2 has an associated gain of two and so care must be taken to ensure the modulator input does not exceed $\pm 2 \mathrm{~V}$. Therefore, the maximum signal voltage that can appear on V_{2+} and V_{2-} is $\pm 0.5 \mathrm{~V}$.
The difference between single-ended and complementary differential input schemes is shown in the diagram below, Figure 9. For a single-ended input scheme the V - input is held at the same potential as the AGND Pin. The maximum voltages can then be applied to the $V+$ input are shown in Figures 10 and 11. An example of this input scheme uses a shunt resistor to convert the line current to a voltage that is then applied to the V_{1+} input of the AD7750.
An example of the complementary differential input scheme uses a current transformer to convert the line current to a voltage that is then applied to V_{1+} and $\mathrm{V}_{1 \text {-. }}$ With this scheme the voltage on the $\mathrm{V}+$ input is always equal to, but of opposite polarity to the voltage on V -. The maximum voltage that can be applied to the inputs of the AD7750 usirgt is scheme is shown in Figures 12 and 13.
N fte that the commonode of the analog inputs must bf driven. The ou put terminaly of the CT are, therefore,

Figure 9. Examples of Complementary and SingleEnded Input Schemes

Figure 10. Maximum Input Singles with Respect to the AGND for a Single-Ended Input Scheme, G1 = 0

Figure 12. Maximum Input Singles for a Complementary Input Scheme, G1=0

Figure 13. Maximum Input Singles for a Complementary Input Scheme, G1 = 1

DETERMINING THE OUTPUT FREQUENCIES OF THE AD7750

The $\mathrm{F}_{\text {Out }}, \mathrm{F} 1$ and F2 are the frequency outputs of the AD7750. The output frequencies of the AD7750 are a multiple of a binary fraction of the master clock frequency CLKIN. This binary fraction of the master clock is referred to as $\mathrm{F}_{\mathrm{MAX}}$ in this data
sheet. $\mathrm{F}_{\mathrm{MAX}}$ can have one of two values, $\mathrm{F}_{\mathrm{MAX} 1}$ and $\mathrm{F}_{\mathrm{MAX} 2}$, depending on which mode of operation the AD7750 is in. The operating modes of the AD7750 are selected by the logic inputs FS, S2 and S1. The table below outlines the $\mathrm{F}_{\text {MAX }}$ frequencies and the transfer functions for the various operating modes of the AD7750.

Table I. Operating Mode

NOTES
${ }^{1}$ The variable k is proportional to the product of the rms differential input voltages on Channel 1 and Channel $2\left(\mathrm{~V}_{1}\right.$ and $\left.\mathrm{V}_{2}\right)$.

$$
\mathrm{k}=\left(1.32 \times \mathrm{V}_{1} \times \mathrm{V}_{2} \times \text { Gain }\right) / \mathrm{V}_{\text {REF }}^{2}
$$

${ }^{2}$ Applies to $\mathrm{F}_{\text {OUt }}$ only. The variable k is proportional to the instantaneous differential input voltage on Channel 1 ($\mathrm{FS}=0, \mathrm{~S} 1=1, \mathrm{~S} 0=1$) or the instantaneous differential voltage on Channel $2(\mathrm{FS}=1, \mathrm{~S} 1=1, \mathrm{~S} 0=1)$, i.e., Channel Monitor Mode
$\mathrm{k}=(0.81 \times \mathrm{V}) / \mathrm{V}_{\mathrm{REF}}$
$\mathrm{V}=\mathrm{V}_{1} \times$ Gain or
$\mathrm{V}=\mathrm{V}_{2} \times 2$.
NOTE: V1 and V2 here refer to the instantaneous differential voltage on Channel 1 or Channel 2, not the rms value.

Mode Description (Table I)

The section of Table I labeled Mode Description summarizes the functional modes of the AD7750. The AD7750 has two basic modes of operation, i.e., four and two quadrant multiplication. The diagram in Figure 14 is a graphical representation of the transfer functions for two and four quadrant multiplication.

Four Quadrant Multiplication (Modes 0, 3, 4 and 7)

When the AD7750 is operating in its four quadrant multiplication mode the output pulse frequency on F1, F2 and Fout contains both sign and magnitude information. The magnitude information is indicated by the output frequency variation ($k . \mathrm{F}_{\mathrm{MAX}}$) from a center frequency ($\mathrm{F}_{\mathrm{MAX}}$). The sign information is indicated by the sign of the frequency variation around $\mathrm{F}_{\mathrm{MAX}}$. For example if the output frequency is equal to $\mathrm{F}_{\mathrm{MAX}}$ $k . \mathrm{F}_{\text {MAX }}$ then the magnitude of the product is given by $\mathrm{k} . \mathrm{F}_{\mathrm{MAX}}$ and it has a negative sign.

Two Quadrant Multiplication (Modes 1, 2, 5 and 6)

When operating in this mode the output pulse frequency only contains magnitude information. Again as in the case of four
quadrant multiplication the magnitude information is included in the output frequency variation ($\mathrm{k} . \mathrm{F}_{\mathrm{MAX}}$). However, in this mode the quincient frequency is 0 Hz , so the output frequency variation is from 0 Hz to ($\mathrm{k} . \mathrm{F}_{\mathrm{MAX}}$) Hz . Also note that a no-load threshold and the reverse polarity indicator are implemented in these modes see No Load Threshold and Reverse Polarity Indicator sections. These modes are the most suitable for a Class 1 meter implementation.

Channel Monitor Modes (Modes 3 and 7)

In this mode of operation the F Fut pulse frequency does not give product information. When $\mathrm{FS}=0$, the $\mathrm{F}_{\text {OUT }}$ output frequency gives sign and magnitude information about the voltage on Channel 1. When FS $=1$ the $\mathrm{F}_{\text {Out }}$ output frequency gives sign and magnitude information about the voltage on Channel 2.
Note the F1, F2 pulse output still continues to give power information.

TWO QUADRANT MULTIPLICATION
(MAGNITUDE ONLY)

re. so gr at care mus be taken whin interfacing the analog Table II shows the maximum output kequencies fF put and F1, F2 for the various operating modes of the AD7750 The table shows the maximum output frequencies for dc and dc
input signals on V_{1} and V_{2}. When an ac signal (sinusoidal) is applied to V_{1} and V_{2} the AD7750 produces an output frequency which is proportional to the product of the rms value of these inputs. If two ac signals with peak differential values of $\mathrm{V}_{1 \text { MAX }}$ and $V_{2 \text { max }}$ are applied to Channels 1 and 2, respectively, then the output frequency is proportional to $\mathrm{V}_{1 \mathrm{MAX}} /$ sqrt $(2) \times \mathrm{V}_{2 \mathrm{MAX}} /$ sqrt $(2)=\left(V_{1 \text { MAX }} \times V_{2 \text { MAX }}\right) / 2$. If $V_{1 \text { MAX }}$ and $V_{2 \text { MAX }}$ are also the maximum dc input voltages then the maximum output frequencies for ac signals will always be half that of dc input signals. Example calculation of F1, F2 max for Mode 2 and Gain $=1$. The maximum input voltage (dc) on Channel 1 is $2 \mathrm{~V}\left(\mathrm{~V}_{1+}=\right.$ $+1 \mathrm{~V}, \mathrm{~V}_{1-}=-1 \mathrm{~V}$) -see Analog Inputs section. The maximum input voltage on Channel 2 is 1 V . Using the transfer function:

$$
\begin{gathered}
k=\left(1.32 \times V_{1} \times V_{2} \times \text { Gain }\right) / V_{R E F}^{2} \\
k=0.442 \\
F 1, F 2=k .6 .8 \mathrm{~Hz}=2.9 \mathrm{~Hz}
\end{gathered}
$$

FUNCTIONAL DESCRIPTION

The AD7750 combines two analog-to-digital converters, a digita multiplier, digital filters and a digital-to-frequency (DTF) converter onto one low cost integrated circuit. The AD7750 is fabricated on a double poly CMOS process (0.6μ) and retains its high accuracy by performing all multiplications and manipulations in the digital domain. The schematic in Figure 15 shows an equivalent circuit for the AD7750 signal processing chain. The first thing to notice is that the analog signals are first con-

HPL F in Channel $1 /$ d
To remove and that may be present at th output modulator 1, a user selectable high-pas IIR filter (P in ACDC) can be introduced into the sight path. This HPF io nefessary when carrying out power measurements. However th $\angle \mathcal{H P}$ has an associated phase lead given by $90^{\circ}-\tan ^{-1}(\mathrm{f} / 2.25)$ Figure 16 shows the transfer function of the HPF in Channel 1. The Phase lead is 2.58° at 50 Hz . In order to equalize the phase difference between the two channels a fixed time delay is introduce. The time delay is set at $143 \mu \mathrm{~s}$, which is equivalent to a phase lag of -2.58° at 50 Hz . Thus the cumulative phase shift through Channel 1 is 0°.
Because the time delay is fixed, external phase compensation circuitry will be required if the line frequency differs from 50 Hz . For example with a line frequency of 60 Hz the phase lead due to the HPF is 2.148° and the phase lag due to the fixed time delay is 3.1°. This means there is a net phase lag in Channell 1 of 0.952°. This phase lag in Channel 1 can be compensated for by using a phase lag compensation circuit like the one shown in Figure 17. The phase lag compensation is placed on Channel 2 (voltage channel) to equalize the channels. The antialiasing filter associated with Channel 1 (see Applications section) produces a phase lag of 0.6° at 50 Hz ; therefore, to equalize the channels, a net phase lag of $\left(0.6^{\circ}+0.952^{\circ}\right) 1.552^{\circ}$ should be in place on Channel 2. The gain trim resistor VR1 (100Ω) produces a phase lag variation of 1.4° to 1.5° with VR2 $=0 \Omega$. VR2 can add an additional 0.1° phase lag $($ VR2 $=200 \Omega)$. verted to a digital signal by the two second-order sigma-delta modulators. All subsequent signal processing is carried out in the digital domain. The main source of errors in an application is therefore in the analog-to-digital conversion process. For this

Table II. Maximum Output Frequencies

Mode	FS	S2	S1	F1, F2 (Hz) (DC)	$\mathbf{F}_{\text {Our }}(\mathbf{H z})$ (DC)	F1, F2 (Hz) (AC)	$\mathbf{F}_{\text {our }}(\mathbf{H z})$ (AC)
0	0	0	0	6.8 ± 2.9	109 ± 46	6.8 ± 1.45	109 ± 23
1	0	0	1	0 to 2.9	0 to 23	0 to 1.45	0 to 11.5
2	0	1	0	0 to 2.9	0 to 46	0 to 1.45	0 to 23
3	0	1	1	6.8 ± 2.9	218 ± 142	6.8 ± 1.45	218 ± 142
4	1	0	0	13.6 ± 5.8	218 ± 92	13.6 ± 2.9	218 ± 46
5	1	0	1	0 to 5.8	0 to 92	0 to 2.9	0 to 46
6	1	1	0	0 to 5.8	0 to 184	0 to 2.9	0 to 92
7	1	1	1	13.6 ± 5.8	218 ± 142	13.6 ± 2.9	218 ± 142

$\mathrm{H}(\mathrm{s})=\frac{\mathrm{sRC}}{1+\mathrm{sRC}}$

Figure 16. HPF in Channel 1

Figure 17. Phase Lag Compensation on Channel 1 for 60 Hz Line Frequency

Digital-to-Frequency Converter (DTF)
After they have been filtered, the outputs of the two sigma-delta modulators are fed into a digital multiplier. The output of the multiplier is then low-pass filtered to obtain the real power information. The output of the LPF enters a digital-to-frequency converter whose output frequency is now proportional to the real power. The DTF offers a range of output frequencies to suit most power measurement applications. There is also a high frequency output call, $\mathrm{F}_{\text {OUT }}$, which can be used for calibration purposes. The output frequencies are determined by the logic inputs FS, S2 and S1. This is explained in the section of this data sheet called Determining the Output Frequencies of the AD7750.
Figure 18 shows the waveforms of the various frequency outputs. The outputs F1 and F2 are the low frequency outputs that can be used to directly drive a stepper motor or electromechanical pulse counter. The F1 and F2 outputs provide two alternating low going pulses. The pulse width is set at 275 ms and the time between the falling edges of F1 and F2 is approximately half the period of F1. If, however, the period of F1 and F2 falls below $550 \mathrm{~ms}(1.81 \mathrm{~Hz})$ the pulse width of F1 and F2 is set to half the period. For example in a Mode 3, where F1 and F2 vary around 6.8 Hz , the pulsewidth would vary from $1 / 2 .(6.8+1.45) \mathrm{ms}$ to $1 / 2 .(6.8-1.45) \mathrm{ms}-$ see Table II.

The high frequency Fout output is intended to be used for communications (via IR LED) and calibration purposes. Fout produces a 90 ms wide pulse at a frequency that is proportional to the product of Channel 1 and Channel 2 or the instantaneous voltage on Channel 1 or Channel 2. The output frequencies are given in Table I in the section of this data sheet Determining the Output Frequencies of the AD7750. As in the case of F1 and F2, if the period of Fout falls below 180 ms , the $\mathrm{F}_{\text {out }}$ pulse width is set to half the period. For example, if the $\mathrm{F}_{\text {OUT }}$ frequency is 20 Hz , the F Fout pulsewidth is 25 ms .

We will assume the design of a Class 1 meter. The specification (IEC1036) requires that the meter have an error of no greater than 1% over the range $4 \% \mathrm{Ib}$ to $400 \% \mathrm{Ib}\left(\mathrm{I}_{\mathrm{MAX}}\right)$, where Ib is the basic current ${ }^{1}$. Also we will design a meter that accommodates signals with a crest factor of 2 . The crest factor is the ratio of the $V_{\text {PEAK }} / V \mathrm{rms}$. A pure sinusoidal waveform has a crest of $\operatorname{sqrt}(2)=1.414$ and an undistorted triangular waveform has a crest factor of $\operatorname{sqrt}(3)=1.73$. Using a gain of 1 on Channel 1 the maximum differential signal which can be applied to Channel 1 is $\pm 2 \mathrm{~V}$-See Analog Input Ranges section. With a crest factor of 2 the maximum rms signal on Channel 1 is, therefore, 1 V rms (equivalent to $\mathrm{I}_{\mathrm{MAX}}$). The smallest signal ($4 \% \mathrm{Ib}$) appearing on Channel 1 is therefore 10 mV rms .

Load Current	Channel 1
$4 \% \mathrm{Ib}$	10 mV rms
Ib	250 mV rms
400 Ib	1 V rms

VOLTAGE REFERENCE

The AD7750 has an on-chip temperature compensa ed bar dgap voltage reference of 2.5 V with a tolerance of 250 aV . The temperature drift for the reference is specified at $50 \mathrm{ppr} 1^{\circ} \mathrm{C}$ It should be noted that this reference variation will cause a frequency output variation from device to device for a given set of input signals. This should not be a problem in most applications since it is a straight gain error that can easily be removed at the calibration stage.

REVERSE POLARITY INDICATOR

When the AD7750 is operated in a magnitude only mode of operation (i.e., Modes 1, 2, 5 and 6), and the polarity of the power changes, the logic output REVP will go high. However, the REVP pin is only activated when the there is pulse output on F1 or F2. Therefore, if the power being measured is low, it may be some time before the REVP pin goes logic high even though the polarity of the power is reversed. Once activated the REVP output will remain high until the AD7750 is powered down.

APPLICATIONS INFORMATION

Designing a Single Phase Class 1 Energy Meter (IEC 1036)

The AD7750 Product-to-Frequency Converter is designed for use in a wide range of power metering applications. In a typical power meter two parameters are measured (i.e., line voltage and current) and their product obtained. The real power is then obtained by low-pass filtering this product result. The line voltage can be measured through a resistor divider or voltage transformer, and the current can be sensed and converted to a voltage through a shunt resistor, current transformer or hall effect device.
The design methodology used in the following example is to use the upper end of the current channel dynamic range, i.e., Channel 1 of the AD7750. The assumption here is that the signal on the voltage channel will remain relatively constant while the signal on the current channel vary with load. Using the upper end of the dynamic range of Channel 1 will improve the meter accuracy with small load currents. Hence an error of less than 1% from $4 \% \mathrm{Ib}$ to $400 \% \mathrm{Ib}$ will be easier to achieve.
${ }^{1}$ See IEC 1036 2nd Edition 1996-09 Section 3.5.1.1.

Calculations for a 100 PPKWHR Meter

The AD7750 offers a range of maximum output frequenciessee Table I and Table II. In the magnitude only mode of operation the two maximum output frequencies are 1.45 Hz and 2.9 Hz . The signal on the voltage channel (Channel 2) is scaled to achieve the correct output pulse frequency for a given load (e.g., 100 PPKWHR). The relationship between the input signals and the output frequency is given by the equation:

$$
\begin{gathered}
\text { Freq }=k \times F_{M A X} \\
\text { where } k=\left(1.32 \times V_{1} \times V_{2} \times \text { Gain }\right) / V_{R E F}^{2}
\end{gathered}
$$

$F_{M A X}=6.8 \mathrm{~Hz}$ or 13.6 Hz depending on the mode-see Table I, Gain is the gain of Channel 1, V_{1} and V_{2} are the differential voltages on Channels 1 and 2 and $V_{R E F}$ is the reference voltage ($2.5 \mathrm{~V} \pm 10 \%$).
To design a 100 PPKWHR meter with $\mathrm{Ib}=15 \mathrm{~A}$ rms and a line voltage of 220 V rms the output pulse frequency with a load current of Ib is 0.0916 Hz (See Calculation 1 below).
Therefore, $0.0916 \mathrm{~Hz}=\mathrm{k} .68 \mathrm{~Hz}$ (Mode 2) or $\mathrm{k}=0.01347$.
With a load current of Ib the signal on Channel $1\left(\mathrm{~V}_{1}\right)$ is equal to 0.25 V rms (remember $400 \% \mathrm{Ib}=1 \mathrm{~V} \mathrm{rms}$) and, therefore, the signal on Channel $2\left(\mathrm{~V}_{2}\right)$ is equal to 0.255 V rms (See Calculation 2). This means that the nominal line voltage (220 V rms) needs to be attenuated by approximately 860 , i.e., 220/0.255.
For 100 PPKWHR V_{2} is equal to 0.255 V rms or the line voltage attenuated by a factor of 860 .

Calculation 1

100 PPKWHR $=0.02777 \mathrm{~Hz} / \mathrm{kW}$.
Ib of 15 A rms and line voltage of $220 \mathrm{~V}=3.3 \mathrm{k} \Omega$. Hence, the output frequency is given by $3.3 \times 0.02777 \mathrm{~Hz}=0.0916 \mathrm{~Hz}$.

Calculation 2

$\mathrm{k}=\left(1.32 \times \mathrm{V}_{1} \times \mathrm{V}_{2} \times\right.$ Gain $) / \mathrm{V}_{\mathrm{REF}}{ }^{2}$.
$0.01347=\left(1.32 \times 0.25 \times V_{2} \times 1\right) / 6.25$.
$V_{2}=0.255$.
Figure 21 below shows how the design equations from the previous page are implemented.

Measuring the Load Current.

The load current is converted to a voltage signal for Channel 1 using a CT (Current Transformer). A 15 A rms load should produce a 250 mV rms signal on Channel 1. A CT with turns ratto or 120 and a shunt resistor of 2Ω. will carry out the necessaryrento voltage conversion. The CT and its shunt resispance should pe ppaced as chese as possible to the AD7750. This will improve the accuracy f the meter at very small load currents. At ma/l ly ad Lurents the vo tage levels in Channel 1 are the oder for 0 mV and the meter is more pro ne to error the to stray signal pic up. Whyn me asurn power the HPE in necting the ACDC pin to VD. to ground. This can be achieved a showninfig 2 belac, i.d. by referencing $1 / 2 R_{\text {CT }}$ to ground or by connecting a dentertap on the CT secondary to ground.

Measuring the Line Voltage

When the AD7750 is biased around the live wire as shown in Figure 21, the task of measuring the line voltage is greatly simplified. A resistor attenuator attenuates the line voltage and provides a single-ended input for Channel 2. The component values of the attenuator are chosen to give the correct rating (e.g., 100 PPKWHR) for the meter. See the design equations on the previous page. For this design an attenuation ratio of 860:1 is required.

Antialiasing Components Channels 1 and 2

The AD7750 is basically two ADCs and a digital multiplier. As with any ADC, a LPF (Low-Pass Filter) should be used on the analog inputs to avoid out of band signal being aliased into the band of interest. In the case of a Class 1 meter the band of interest lies in the range 48 Hz to 1 kHz approximately. The components R3, R4, R6, R7, C5, C6, C9 and C10 make up the LPFs on each of the four analog inputs. Note that although Channel 2 is used single ended a LPF is still required on V_{2-}.

Power Supply Circuit

The AD7750 operates from a single power supply of $5 \mathrm{~V} \pm 5 \%$ but still accommodates input signals in the range $\pm 1 \mathrm{~V}$. Because the AD7750 doesn't require dual supplies the number of external components for the power supply is reduced. One of the most important design goals for the power supply is to ensure that the ripple on the output is as low as possible. Every analog or mixed signal IC is to a greater or lesser extent susceptible to power supply variations. Power supply variations or ripple, if large enough, may affect the accuracy of the device when measuring small signals. The plot in Figure 20 shows the ripple associated with the circuit in Figure 21. The ripple is in the regip of 10 mV peak to peak.

Figure 20. Power Supply Ripple

*BIASING AROUND THE LIVE WIRE PATENTED BY SChlumberger.
Figure 21. Suggested Class 1 Meter Implementation

AD7750

Registering the Power Output

The low frequency pulse outputs (F1 and F2) of the AD7750 provide the frequency output from the product-to-frequency conversion. These outputs can be used to drive a stepper motor or impulse counter.
A high frequency output is available at the pin $\mathrm{F}_{\text {Out }}$. This high frequency output is used for calibration purposes. In Mode 2 the output frequency is $16 \times$ F1 (2). With a load current of Ib the frequency at Fout will be $1.4656 \mathrm{~Hz}(0.0916 \mathrm{~Hz} \times 16$ from calculations). If a higher frequency output is required, the FS pin can be set to $V_{D D} 5 \mathrm{~V}$ for calibration. In this case the output frequency is equal to $64 \times \mathrm{F} 1$ or 5.8624 Hz at Ib-see Table I.

NO LOAD THRESHOLD OF THE AD7750

The AD7750 will detect when the power drops below a certain level When power (current) drops below a predefined th eshotath AD 7750 will cease the generate an output drive f r the stepper motor F1, F2). Xis feature of the AD7750 is nte ided to reproqluce the betiqvio of Femaris meters. A Ferraris mete. wil hove flietion ass cia ed with the hheel rotaton, kerefce the wheel will not otate bel (w a ctrta) n poyer
leve The no oad threshold is onl) implementre in che nagp tude only modes (4odes $1,2,6$ add 7 -see Table). The
IEC1036 specification metudes thes this effect py requing no output pulses during some predetexminedtlme per od. This time period is calculated as:

$$
\text { time period }=60,000 / \text { pulses-per-minute }
$$

If a meter is calibrated to 100 PPKWHR with a Fout running 16 times faster than F1 and F2, this time period is 37.5 minutes $(60,000 / 1,600)$. The IEC1036 specifications state that the no load threshold must be less than the start up current level. This is specified as 0.4% of Ib .
The threshold level for a given design can be easily calculated given that the minimum output frequency of the AD7750 is 0.00048% of the maximum output frequency for a full-scale differential dc input. For example if $\mathrm{FS}=0$, the maximum output frequency for a full-scale dc input is 2.9 Hz (see Table II) and the minimum output frequency is, therefore, $1.39 \times 10^{-5} \mathrm{~Hz}$.

Calculating the Threshold Power (Current)

The meter used in this example is calibrated to 100 PPKWHR, has an Ib (basic current) of 15 A rms , the line voltage is 220 V rms and the turns ratio of the CT on Channel 1 is $120: 1$ with an 2Ω shunt resistor.
The nominal voltage on Channel 2 of the AD7750 is 255 mV rms. An $\mathrm{F}_{\text {max }}$ of 6.8 Hz is selected by setting $\mathrm{FS}=0$. A Magnitude Mode (Mode 2) is selected to enable the no load threshold. The gain on Channel 1 is set to 1 . The threshold power or current can be found by using the transfer function in Table I.

$$
F 1, F 2=\left(1.32 \times V_{1} \times V_{2} \times \text { Gain } \times F_{M A X}\right) / V_{R E F}^{2}
$$

From the transfer function V_{2} is calculated as 37.95 or V rmssee Calculation 3.

This is equivalent to a line current of:

$$
\begin{gathered}
(37.95 \mu \mathrm{~V} / 2 \mathrm{~W}) \times 120=2.27 \mathrm{~mA} \text { rms or } 0.5 \mathrm{~W} \\
\text { or }
\end{gathered}
$$

$(2.27 \mathrm{~mA} / 15 \mathrm{~A}) \times 100 \%=0.015 \%$ of $I b$.
NOTE: The no load threshold as a percentage of Ib will be different for each value of Ib since the no load in watts is fixed:
$\mathrm{FS}=0$, the no load threshold is $\left(\mathrm{F}_{\mathrm{MAX}}=6.8 \mathrm{~Hz}\right)$
0.5 Watts for a 100 PPKWHR meter

5 Watts for a 10 PPKWHR meter
$\mathrm{FS}=1$, the no load threshold is $\left(\mathrm{F}_{\mathrm{MAX}}=13.6 \mathrm{~Hz}\right)$
1 Watt for a 100 PPKWHR meter
10 Watts for a 10 PPKWHR meter

Calculation 3

$\mathrm{F}_{\text {MIN }}=1.32 \times \mathrm{V}_{1} \times \mathrm{V}_{2} \times$ Gain $\left.\times 6.8 \mathrm{~Hz}\right) \mathrm{V}_{\text {REF2 }}$
$\left.1.39 \times 10-5 \mathrm{~Hz}=\mathrm{V}_{1} \times 0.2555 \times 1 \times 6.8\right) / 6.25$
$\mathrm{V}_{1}=37.95 \mu \mathrm{~V}$

EXTERNAL LEAD/LAG COMPENSATION

External phase compensation is often required in a power meter defign tyiminate the phase errors introduced by transducers components. The design restriction on any external con pe isat/ng network/s that ne network must have an overall loy-p.ss response with a $3 / \mathrm{AB}$ point/locat somewhere between 5. kH an 16 kHz . The colner frequenc of this LPF is much high fr th an the band of interest. The reaso fo this o mint miz its effec tolerances. With the same antialiasing filters on all znal main contribution to phase error will be du to the CT A phase lead in a channel is compensated by lowering the corner fre quency of the antialiasing filter to increase its associated and. therefore, cancel the lead. A phase lag in a channel should be compensated by introducing extra lag in the other channel. This can be done as described previously, i.e., moving the corner frequency of the antialiasing filters. The result in this case is that the signal on both channels has the same amount of phase lag and are, therefore, in phase at the analog inputs to the AD7750. The recommended antialiasing filters for the analog inputs, (see Antialiasing Components Channels 1 and 2) $\mathrm{R}=1 \mathrm{k} \Omega$ and $\mathrm{C}=33 \mathrm{nF}$, produces a phase lag of 0.6°. Varying R in the antialiasing network from 800Ω to $1 \mathrm{k} \Omega$ produces a phase variation from 0.475° to 0.6° at 50 Hz . This allows the user to vary the lag by 0.125°.

AD7750
Table III. Components for Suggested Class 1 Meter Implementation in Figure 14

Schematic Designator	Description	Comments
R 1		
R 2		
$\mathrm{R} 3, \mathrm{R} 4, \mathrm{R} 7$		
R 5		

[^0]: REV.
 Information furnished by Analog Devices is believed to be accurate an reliable. However, no responsibility is assumed by Analog Devices for it use, nor for any infringements of patents or other rights of third partie which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

