

3 V/5 V CMOS <1 Ω SPDT Switch

Preliminary Technical Data

ADG819/820

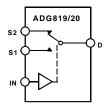
FEATURES

Low On Resistnace <0.8 Ω max at 5 V supply 0.2 Ω max On-Resistance Flatness +1.8 V to +5.5 V Single Supply High Current Carrying Capability Extended Temperature Range: +125° Rail-to-Rail Operation 6-Lead SOT-23 Package, 8-Lead μ SOIC Package, Wafer-Level Chipscale Package Fast Switching Times Typical Power Consumption (<0.01 μ W) TTL/CMOS Compatible Inputs Pin Compatible with the ADG719 (ADG819)

APPLICATIONS
Power Routing
Battery Powered Systems
Communication Systems
Data Acquisition Systems
Audio and Video Signal Routing
Cellular Phones
Modems
PCMCIA Cards
Hard Drives
Audio and Video Switching
Relay Replacement

GENERAL DESCRIPTION

The ADG819 and the ADG820 are monolithic, CMOS SPDT (single pole, double throw) switches. These switches are designed on a submicron process, that provides low power dissipation yet gives high switching speed, low On Resistance and low leakage currents.


Low-power consumption and operating supply range of +1.8~V to +5.5~V make the ADG819 and ADG820 ideal for battery-powered, portable instruments.

Each switch of the ADG819/820 conducts equally well in both directions when on. The ADG819 exhibits breakbefore-make switching action, thus preventing momentary shorting when switching channels. The ADG820 exhibits make-before-break action.

The ADG819/820 are available in a 6-lead SOT-23 package and an 8-lead $\mu SOIC$ package. The ADG819 is also available in a 2x3 array Wafer-level Chipscale package. This chip occupies only a 2.18mm x 1.14mm area, thus making it the ideal candidate for space-constrained applications.

otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC "1" INPUT

PRODUCT HIGHLIGHTS

- 1. Very Low On Resistance, 0.5Ω typical.
- 2. +1.8 V to +5.5 V Single Supply Operation.
- 3. Low Power Dissipation. CMOS construction ensures low power dissipation.
- 4. High Current Carrying Capability.
- 5. Tiny 6-Lead SOT-23 Package, 8-Lead $\mu SOIC$ Package and 2x3 array Wafer-level Chipscale Package.

REV. PrF 01/02

$\label{eq:ADG819/820-SPECIFICATIONS} \textbf{ADG819/820-SPECIFICATIONS}^{1} \quad \text{($V_{DD} = +5 \text{ V} \pm 10\%, GND = 0 \text{ V}. All specifications -40°C to +125°C unless otherwise noted.)}$

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Units	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0~\mathrm{V}$ to V_{DD}	V	
On Resistance (R _{ON})	0.5			Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
	0.8		1	Ω max	Test Circuit 1
On Resistance Match Between					
Channels (ΔR_{ON})	0.06	0.1		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
	0.12	0.15	0.2	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})	0.1	0.0	0.05	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
		0.2	0.25	Ω max	
LEAKAGE CURRENTS					$V_{\rm DD} = +5.5 \text{ V}$
Source OFF Leakage I _S (OFF)	± 0.01			nA typ	$V_S = 4.5 \text{ V}/1 \text{ V}, V_D = 1 \text{ V}/4.5 \text{ V}$
-	± 0.5	±1	TBD	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	± 0.01			nA typ	$V_{S} = V_{D} = 1 \text{ V}, \text{ or } V_{S} = V_{D} = 4.5 \text{ V}$
	± 0.5	±1	TBD	nA max	Test Circuit 3
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	
DYNAMIC CHARACTERISTICS ²					
t _{ON}	30			ns typ	$R_{L} = 50 \Omega, C_{L} = 35 pF$
	TBD		TBD	ns max	$V_S = 3 \text{ V}$, Test Circuit 4
t _{OFF}	20			ns typ	$R_{L} = 50 \Omega, C_{L} = 35 pF$
	TBD		TBD	ns max	V _S = 3 V, Test Circuit 4
ADG819					
Break-Before-Make Time Delay, t_{BBM}	10			ns typ	$R_{L} = 50 \Omega, C_{L} = 35 pF,$
			TBD	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$, Test Circuit 5
ADG820	4 ~				D 500 G 05 D
Make-Before-Break Time Delay, t_{MBB}	15		TDD	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$,
Change Injection	. 20		TBD	ns min	$V_S = 0 \text{ V}$, Test Circuit 6
Charge Injection	±20			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF'}$ Test Circuit 7
Off Isolation	-65			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,
On isolation	-03			ub typ	Test Circuit 8
Channel-to-Channel Crosstalk	-65			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,
				J I	Test Circuit 10
Bandwidth -3 dB	30			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C _S (OFF)	25			pF typ	_
$C_{D,}C_{S}(ON)$	75			pF typ	
POWER REQUIREMENTS					$V_{\mathrm{DD}} = +5.5 \mathrm{\ V}$
					Digital Inputs = 0 V or 5.5 V
I_{DD}	0.001			μA typ	
			1.0	μA max	

NOTES

REV. PrF -2-

¹Temperature ranges are as follows: Extended Range: -40°C to +125°C. ²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

 $\label{eq:ADG819/820-SPECIFICATIONS} \textbf{ADG819/820-SPECIFICATIONS}^{1} \quad \text{$(V_{DD} = +2.7 \text{ V to } +3.6 \text{ V, GND} = 0 \text{ V. All specifications } -40^{\circ}\text{C to } +125^{\circ}\text{C unless otherwise noted.})}$

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Units	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to $V_{\rm DD}$	V	
On Resistance (R _{ON})	1		o v to v _{DD}	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA},$
On resistance (100N)	1.6		2	Ω max	Test Circuit 1
On Resistance Match Between	1.0		~	22 max	rest circuit i
Channels (ΔR_{ON})	0.1			Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
On-Resistance Flatness (R _{FLAT(ON)})	0.2		TBD	Ω typ	$V_S = 0$ V to V_{DD} , $I_S = 10$ mA
` '	0.2		100	32 typ	
LEAKAGE CURRENTS					$V_{DD} = +3.3 \text{ V}$
Source OFF Leakage I _S (OFF)	± 0.01			nA typ	$V_S = 3 \text{ V}/1 \text{ V}, V_D = 1 \text{ V}/3 \text{ V},$
	± 0.5	±1	TBD	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	± 0.01			nA typ	$V_S = V_D = 1 \text{ V}, \text{ or } V_S = V_D = 3 \text{ V},$
	± 0.5	±1	TBD	nA max	Test Circuit 3
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.4	V max	
Input Current			0.4	Villax	
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INI}$, or V_{INH}
IINL OI IINH	0.003		±0.1	μA typ μA max	VIN - VINL OI VINH
			±0.1	μππιαχ	
DYNAMIC CHARACTERISTICS ²					
t_{ON}	50			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	TBD		TBD	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 4
t _{OFF}	40			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	TBD		TBD	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 4
ADG819					
Break-Before-Make Time Delay, t _{BBM}	10			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$,
			TBD	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V}$, Test Circuit 5
ADG820					
Make-Before-Break Time Delay, t _{MBB}	15			ns typ	$R_{L} = 50 \Omega, C_{L} = 35 pF,$
			TBD	ns min	$V_S = 1.5 \text{ V}$, Test Circuit 6
Charge Injection	±20			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF},$
					Test Circuit 7
Off Isolation	-65			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,
					Test Circuit 8
Channel-to-Channel Crosstalk	-65			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,
					Test Circuit 10
Bandwidth -3 dB	30			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C _S (OFF)	25			pF typ	
$C_D, C_S (ON)$	75			pF typ	
POWER REQUIREMENTS					$V_{DD} = +3.3 \text{ V}$
- C., Liv Ivil & Clivilli (1D					Digital Inputs = 0 V or 3.3 V
I_{DD}	0.001			μA typ	8

REV. PrF -3-

¹Temperature ranges are as follows: Extended Range: -40°C to +125°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to GND0.3 V to +7 V
Analog Inputs ² 0.3 V to V_{DD} + 0.3 V or
30 mA, Whichever Occurs First
Digital Inputs ² $-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or}$
30 mA, Whichever Occurs First
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle max)
Continuous Current, S or D
Operating Temperature Range
Extended40°C to +125°C
Storage Temperature Range65°C to +150°C
Junction Temperature +150°C
μSOIC Package
θ _{JA} Thermal Impedance
θ_{JC} Thermal Impedance
SOT-23 Package
θ _{JA} Thermal Impedance
θ_{JC} Thermal Impedance

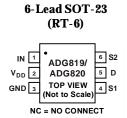
θ_{JA} Thermal Impedance	°C/W
θ_{JC} Thermal Impedance	°C/W
Lead Temperature, Soldering (10 seconds)	300°C
IR Reflow, Peak Temperature +	-220°C

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

Table I. Truth Table for the ADG819/ADG820


IN	Switch S1	Switch S2
0	ON	OFF
1	OFF	ON


ORDERING GUIDE

Model Option	Temperature Range	Supply Option	Brand ¹	Package Description	Package
ADG819BRM	-40°C to +125°C	3 V, 5 V	SNB	μSOIC (microSmall Outline IC)	RM-8
ADG819BRT	-40°C to +125°C	3 V, 5 V	SNB	SOT-23 (Plastic Surface Mount)	RT-6
ADG819BCB	-40°C to +85°C	3 V, 5 V	SNB	WLCSP (Wafer-Level Chip Scale Package)	CB-6*
ADG820BRM	-40°C to +125°C	3 V, 5 V	SPB	μSOIC (microSmall Outline IC)	RM-8
ADG820BRT	-40°C to +125°C	3 V, 5 V	SPB	SOT-23 (Plastic Surface Mount)	RT-6

¹Branding on all packages is limited to three characters due to space constraints.

PIN CONFIGURATIONS

8-Lead µSOIC

2x3 WLCSPTOP VIEW (bumps at the bottom). Not to Scale

-4- REV. PrF

^{*}Contact factory for availability

TERMINOLOGY

 V_{DD} Most Positive Power Supply Potential.

GND Ground (0 V) Reference.

I_{DD} Positive Supply Current.

S Source Terminal. May be an input or output.
D Drain Terminal. May be an input or output.

IN Logic Control Input.

R_{ON} Ohmic resistance between D and S.

 ΔR_{ON} On resistance match between any two Channels i.e., R_{ON} max – R_{ON} min.

R_{FLAT(ON)} Flatness is defined as the difference between the maximum and minimum value of on resistance as

measured over the specified analog signal range.

 I_S (OFF) Source Leakage Current with the switch "OFF." I_D , I_S (ON) Channel Leakage Current with the switch "ON."

 $\begin{array}{lll} V_D \, (V_S) & Analog \, Voltage \, on \, Terminals \, D, \, S. \\ V_{INL} & Maximum \, Input \, Voltage \, for \, Logic \, ``0". \\ V_{INH} & Minimum \, Input \, Voltage \, for \, Logic \, ``1". \\ I_{INL}(I_{INH}) & Input \, Current \, of \, the \, digital \, Input. \\ C_S \, (OFF) & "OFF" \, Switch \, Source \, Capacitance. \end{array}$

C_D, C_S (ON) "ON" Switch Capacitance.

 t_{ON} Delay between applying the digital control input and the output switching on. Delay between applying the digital control input and the output switching off.

t_{BBM} "OFF" time or "ON" time measured between the 90% points of both switches, when switching from one

address state to another.

t_{MBB} "ON" time, measured between the 80% points of both switches, when switching from one address state

to another.

Charge Injection A measure of the Glitch Impulse transferred from the Digital input to the Analog output during

switching.

Crosstalk A measure of unwanted signal that is coupled through from one channel to another as a result of

parasitic capacitance.

Off Isolation A measure of unwanted signal coupling through an "OFF" switch.

Bandwidth The frequency at which the output is attenuated by -3 dBs.

On Response The frequency reponse of the "ON" switch.

The Loss due to the ON resistance of the Switch.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as $4000 \, \mathrm{V}$ readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG819/820 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. PrF –5–

Typical Performance Characteristics

TBD

TPC 1.

TBD

TPC 3.

TBD

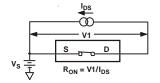
TPC 5.

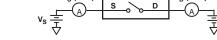
TBD

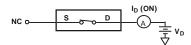
TPC 7.

TBD

TPC 2.

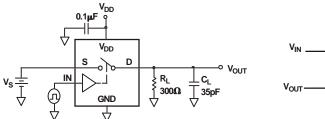

TBD

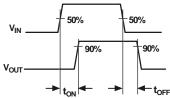

TPC 4.


TBD

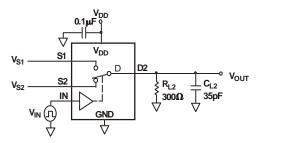
TPC 6.

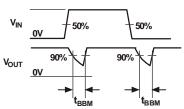
Test Circuits

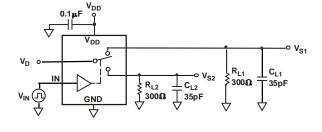


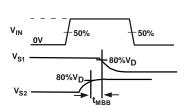


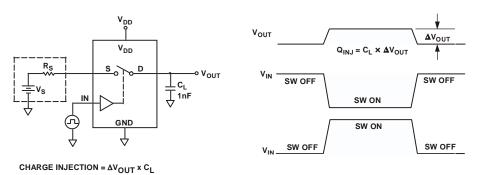
Test Circuit 1. On Resistance

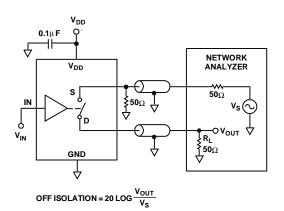

Test Circuit 2. Off Leakage


Test Circuit 3. On Leakage

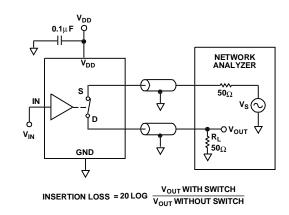


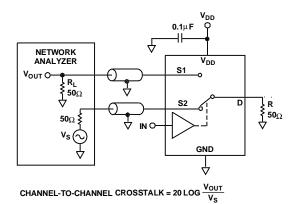

Test Circuit 4. Switching Tlmes


Test Circuit 5. Break-Before-Make Time Delay, t_{BBM} (ADG819 only)



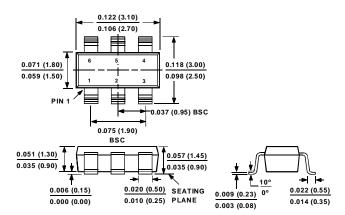
Test Circuit 6. Make-Before-Break Time Delay, t_{MBB} (ADG820 only)


REV. PrF -7-

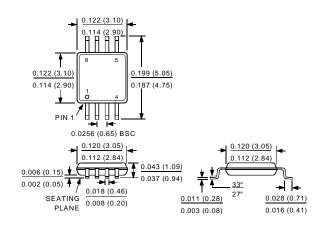

Test Circuit 7. Charge Injection

Test Circuit 8. Off Isolation

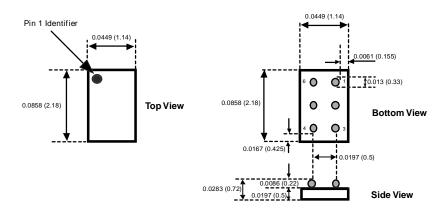
Test Circuit 9. Bandwidth


Test Circuit 10. Channel-to-Channel Crosstalk

REV. PrF –8–


OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).


6-Lead Plastic Surface Mount Package (RT-6)

8-Lead µSOIC Package (RM-8)

2x3 Array for WLCSP (CB-6)

