## Preliminary Technical Data

## FEATURES

Low On Resistnace <0.8 $\Omega$ max at 5 V supply
$0.2 \Omega$ max On-Resistance Flatness
+1.8 V to +5.5 V Single Supply
High Current Carrying Capability
Extended Temperature Range: $\mathbf{+ 1 2 5}{ }^{\circ}$
Rail-to-Rail Operation
6-Lead SOT-23 Package, 8-Lead $\mu$ SOIC Package,
Wafer-Level Chipscale Package
Fast Switching Times
Typical Power Consumption ( $<0.01 \mu \mathrm{~W}$ )
TTL/CMOS Compatible Inputs
Pin Compatible with the ADG719 (ADG819)

## APPLICATIONS

## Power Routing

Battery Powered Systems
Communication Systems
Data Acquisition Systems
Audio and Video Signal Routing
Cellular Phones
Modems
PCMCIA Cards

## Hard Drives

Audio and Video Switching
Relay Replacement

## GENERAL DE SCRIPTION

T he AD G 819 and the AD G 820 are monolithic, CM OS SPDT (single pole, double throw) switches. These switches are designed on a submicron process, that provides low power dissipation yet gives high switching speed, low On Resistance and low leakage currents.
L ow-power consumption and operating supply range of +1.8 V to +5.5 V make the AD G 819 and AD G 820 ideal for battery-powered, portable instruments.
Each switch of the AD G 819/820 conducts equally well in both directions when on. The AD G 819 exhibits break-before-make switching action, thus preventing momentary shorting when switching channels. The AD G 820 exhibits make-before-break action.
The AD G 819/820 are available in a 6-lead SOT-23 package and an 8 -lead $\mu$ SOIC package. T he AD G 819 is also available in a $2 \times 3$ array $W$ afer-level $C$ hipscale package. This chip occupies only a $2.18 \mathrm{~mm} \times 1.14 \mathrm{~mm}$ area, thus making it the ideal candidate for space-constrained applications.

[^0]FUNCTIONAL BLOCK DIAGRAM



## PRODUCT HIGHLIGHTS

1. Very Low On Resistance, $0.5 \Omega$ typical.
2. +1.8 V to +5.5 V Single Supply O peration.
3. Low Power Dissipation. CM OS construction ensures low power dissipation.
4. High C urrent $C$ arrying $C$ apability.
5. Tiny 6-Lead SOT-23 Package, 8-Lead $\mu$ SOIC Package and $2 \times 3$ array $W$ afer-level $C$ hipscale Package.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2002 unless otherwise noted.)

| Parameter | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Units | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range <br> On Resistance ( $\mathrm{R}_{\mathrm{ON}}$ ) <br> On Resistance $M$ atch Between Channels ( $\Delta \mathrm{R}_{\text {ON }}$ ) <br> On-Resistance Flatness ( $\left.\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}\right)$ | $\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.06 \\ & 0.12 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.15 \\ & 0.2 \end{aligned}$ | $\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 1 \\ & 0.2 \\ & 0.25 \end{aligned}$ | V <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ max | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$ <br> T est Circuit 1 $\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$ |
| LEAKAGE CURRENTS <br> Source OFF Leakage IS (OFF) <br> Channel ON Leakage $I_{D}, I_{S}(O N)$ | $\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \end{aligned}$ | $\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$ | $\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$ | nA typ <br> nA max <br> nA typ <br> nA max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{aligned}$ <br> T est Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V}$ <br> Test Circuit 3 |
| DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input C urrent <br> $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ | 0.005 |  | $\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$ | $V$ min <br> V max <br> $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ |
| DYNAMIC CHARACTERISTICS² $t_{0 N}$ $\mathrm{t}_{\mathrm{OFF}}$ | $\begin{aligned} & 30 \\ & \text { TBD } \\ & 20 \\ & \text { TBD } \end{aligned}$ |  | TBD TBD | ns typ ns max ns typ ns max | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~T} \text { est Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~T} \text { est Circuit } 4 \end{aligned}$ |
| AD G 819 <br> Break-Before-M ake T ime D elay, $\mathrm{t}_{\text {ввм }}$ <br> AD G 820 | 10 |  | TBD | ns typ ns min | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V}, \mathrm{~T} \text { est Circuit } 5 \end{aligned}$ |
| $M$ ake-Before-B reak T ime D elay, $\mathrm{t}_{\text {m } \text { в }}$ Charge Injection | 15 $\pm 20$ |  | TBD | ns typ ns min pC typ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~T} \text { est } \mathrm{Circuit} 6 \\ & \mathrm{~V}_{S}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}{ }^{\prime} \end{aligned}$ <br> T est Circuit 7 |
| Off Isolation | -65 |  |  | dB typ | $\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, } \\ & \text { T est Circuit } 8 \end{aligned}$ |
| Channel-to-C hannel Crosstalk | -65 |  |  | dB typ | $\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, } \\ & \text { T est Circuit } 10 \end{aligned}$ |
| $\begin{aligned} & \text { Bandwidth }-3 \mathrm{~dB} \\ & \mathrm{C}_{\mathrm{S}}(\mathrm{OFF}) \\ & \mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}(\mathrm{ON}) \end{aligned}$ | $\begin{aligned} & 30 \\ & 25 \\ & 75 \end{aligned}$ |  |  | M Hz typ pF typ pF typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, T est Circuit 9 |
| POWER REQUIREMENTS $I_{D D}$ | 0.001 |  | 1.0 | $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$ |

## NOTES

${ }^{1}$ Temperature ranges are as follows: Extended Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

| Parameter | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Units | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range <br> On Resistance ( $\mathrm{R}_{\mathrm{ON}}$ ) <br> On Resistance $M$ atch Between Channels ( $\Delta \mathrm{R}_{\text {on }}$ ) <br> On-R esistance F latness ( $\mathrm{R}_{\text {FLAT(ON) }}$ ) | $\begin{aligned} & 1 \\ & 1.6 \\ & 0.1 \\ & 0.2 \end{aligned}$ |  | $\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 2 \\ & \text { TBD } \end{aligned}$ | V <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ typ | $V_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{D D}, I_{S}=-10 \mathrm{~mA},$ <br> Test Circuit 1 $\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$ |
| LEAKAGE CURRENTS <br> Source OFF Leakage IS (OFF) <br> Channel ON Leakage $I_{D}, I_{S}(O N)$ | $\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \end{aligned}$ | $\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$ | $\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$ | nA typ nA max nA typ nA max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}, \end{aligned}$ <br> Test Circuit 2 $V_{S}=V_{D}=1 \mathrm{~V} \text {, or } V_{S}=V_{D}=3 \mathrm{~V} \text {, }$ <br> Test Circuit 3 |
| DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current <br> $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ | 0.005 |  | $\begin{aligned} & 2.0 \\ & 0.4 \\ & \\ & \pm 0.1 \end{aligned}$ | $V$ min <br> V max <br> $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A}$ max | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ |
| DYNAMIC CHARACTERISTICS² <br> $t_{0 N}$ <br> $t_{\text {OFF }}$ | $\begin{aligned} & 50 \\ & \text { TBD } \\ & 40 \\ & \text { TBD } \end{aligned}$ |  | TBD TBD | ns typ <br> ns max <br> ns typ <br> ns max | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{~T} \text { est Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{~T} \text { est Circuit } 4 \end{aligned}$ |
| Break-Before-M ake Time Delay, $\mathrm{t}_{\text {вв }}$ | 10 |  | TBD | ns typ ns min | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=1.5 \mathrm{~V}, \mathrm{~T} \text { est C ircuit } 5 \end{aligned}$ |
| AD G 820 <br> M ake-Before-Break Time D elay, $\mathrm{t}_{\text {M в }}$ Charge Injection | 15 $\pm 20$ |  | TBD | ns typ ns min pC typ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{~T} \text { est Circuit } 6 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \end{aligned}$ $\text { T est Circuit } 7$ |
| Off Isolation | -65 |  |  | dB typ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, } \\ & \text { T est Circuit } 8 \end{aligned}$ |
| Channel-to-C hannel Crosstalk | -65 |  |  | dB typ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, } \\ & \text { T est Circuit } 10 \end{aligned}$ |
| $\begin{aligned} & \text { Bandwidth }-3 \mathrm{~dB} \\ & \mathrm{C}_{\mathrm{S}}(\mathrm{OFF}) \\ & \mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}(\mathrm{ON}) \\ & \hline \end{aligned}$ | $\begin{aligned} & 30 \\ & 25 \\ & 75 \end{aligned}$ |  |  | M Hz typ pF typ pF typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, T est C ircuit 9 |
| POWER REQUIREMENTS $I_{D D}$ | 0.001 |  | 1.0 | $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \mathrm{D} \text { igital Inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$ |

## NOTES

${ }^{1} \mathrm{~T}$ emperature ranges are as follows: Extended Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

## ADG819/820

## ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$V_{D D}$ to GND ..................................... . -0.3 V to +7 V
A nalog Inputs ${ }^{2}$. . . . . . . . . . . . . . . . . -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , W hichever Occurs F irst
 30 mA , Whichever Occurs F irst
Peak Current, S or D 400 mA (Pulsed at $1 \mathrm{~ms}, 10 \%$ D uty Cycle max)
Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . 200 mA
O perating T emperature R ange
Extended . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage T emperature Range . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ............................... . $+150^{\circ} \mathrm{C}$
$\mu$ SOIC Package
$\theta_{\text {IA }}$ Thermal Impedance . . . . . . . . . . . . . . . . . . . . . $206^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {J }}$ Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . $44^{\circ} \mathrm{C} / \mathrm{W}$
SOT-23 Package
$\theta_{\text {IA }}$ Thermal Impedance . . . . . . . . . . . . . . . . . . . . . $229.6^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{Jc}}$ Thermal Impedance . . . . . . . . . . . . . . . . . . . . $91.99^{\circ} \mathrm{C} / \mathrm{W}$


#### Abstract

WLCSP Package $\theta_{\text {JA }}$ Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . ${ }^{\circ} \mathrm{C} / \mathrm{W}$ $\theta_{\text {Jc }}$ Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . ${ }^{\circ} \mathrm{C} / \mathrm{W}$ Lead Temperature, Soldering (10 seconds) . . . . . . . . . $300^{\circ} \mathrm{C}$ IR Reflow, Peak Temperature . . . . . . . . . . . . . . . . . $+220^{\circ} \mathrm{C}$

NOTES ${ }^{1}$ Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time. ${ }^{2}$ O vervoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.


Table I. Truth Table for the ADG819/AD G820

| IN | Switch S1 | Switch S2 |
| :--- | :--- | :---: |
| 0 | ON | OFF |
| 1 | OFF | ON |

ORDERING GUIDE

| Model Option | Temperature Range | Supply Option | Brand $^{\mathbf{1}}$ | PackageDescription | Package |
| :--- | :--- | :---: | :--- | :--- | :--- |
| AD G 819BRM | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $3 \mathrm{~V}, 5 \mathrm{~V}$ | SN B | $\mu$ SOIC (microSmall Outline IC) | RM -8 |
| AD G 819BRT | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $3 \mathrm{~V}, 5 \mathrm{~V}$ | SN B | SOT -23 (Plastic Surface M ount) | RT -6 |
| AD G 819BC B | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $3 \mathrm{~V}, 5 \mathrm{~V}$ | SN B | WLCSP (W afer-L evel C hip Scale Package) | CB-6* |
| AD G 820BRM | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $3 \mathrm{~V}, 5 \mathrm{~V}$ | SPB | $\mu$ SOIC (microSmall Outline IC) | RM -8 |
| AD G 820BRT | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $3 \mathrm{~V}, 5 \mathrm{~V}$ | SPB | SOT -23 (Plastic Surface M ount) | RT-6 |

${ }^{1}$ Branding on all packages is limited to three characters due to space constraints.
*C ontact factory for availability

## PIN CONFIGURATIONS



2x3 WLCSP

## TOP VIEW (bumps at the

 bottom). Not to Scale| IN | 52 |
| :---: | :---: |
| V | D |
| $\mathrm{V}^{\text {d }}$, | (5) |
| GND | S1 |
| (3) | (4) |

$\square$
TERMINOLOGY

| $\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \text { GND } \end{aligned}$ | M ost Positive Power Supply Potential. Ground (0 V) Reference. |
| :---: | :---: |
| $I_{\text {D }}$ | Positive Supply Current. |
| S | Source T erminal. M ay be an input or output. |
| D | D rain Terminal. M ay be an input or output. |
| IN | L ogic C ontrol Input. |
| $\mathrm{R}_{\text {ON }}$ | Ohmic resistance between D and S . |
| $\Delta \mathrm{R}_{\text {ON }}$ | On resistance match between any two $C$ hannels i.e., $\mathrm{R}_{\text {ON }} \mathrm{max}-\mathrm{R}_{\text {ON }} \mathrm{min}$. |
| $\mathrm{R}_{\text {FLAT (ON) }}$ | F latness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range. |
| $\mathrm{I}_{\mathrm{S}}(\mathrm{OFF})$ | Source Leakage Current with the switch "OFF." |
| $I_{D}, I_{S}(O N)$ | C hannel Leakage C urrent with the switch "ON." |
| $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$ | A nalog Voltage on Terminals D, S. |
| $\mathrm{V}_{\text {INL }}$ | M aximum Input Voltage for Logic " 0 ". |
| $V_{\text {INH }}$ | M inimum Input Voltage for Logic "1". |
| $\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$ | Input Current of the digital Input. |
| $\mathrm{C}_{S}$ (OFF) | "OFF" Switch Source Capacitance. |
| $C_{D}, C_{S}(O N)$ | "ON" Switch Capacitance. |
| $\mathrm{t}_{\text {ON }}$ | D elay between applying the digital control input and the output switching on. |
| $\mathrm{t}_{\text {OFF }}$ | D elay between applying the digital control input and the output switching off. |
| $t_{\text {BBM }}$ | "OFF" time or "ON" time measured between the $90 \%$ points of both switches, when switching from one address state to another. |
| $\mathrm{t}_{\text {M BB }}$ | "ON" time, measured between the $80 \%$ points of both switches, when switching from one address state to another. |
| C harge Injection | A measure of the G litch Impulse transfered from the Digital input to the Analog output during switching. |
| Crosstalk | A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. |
| Off Isolation | A measure of unwanted signal coupling through an "OFF" switch. |
| Bandwidth | T he frequency at which the output is attenuated by -3 dBs . |
| On Response | T he frequency reponse of the "ON" switch. |
| Insertion Loss | T he Loss due to the ON resistance of the Switch. |

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD G 819/820 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


ADG819/820


TPC 1.


TPC 3.


TPC 5.


TPC 7.

## Typical Performance Characteristics



TPC 2.


TPC 4.


TPC 6.

## Test Circuits



Test Circuit 1. On Resistance


Test Circuit 2. Off Leakage


Test Circuit 3. On Leakage


Test Circuit 4. Switching TImes


Test Circuit 5. Break-Before-Make Time Delay, $t_{B B M}$ (ADG819 only)


Test Circuit 6. Make-Before-Break Time Delay, $t_{\text {MBB }}$ (ADG820 only)


CHARGE INJECTION $=\Delta V_{\text {OUT }} \times C_{L}$
Test Circuit 7. Charge Injection


OFF ISOLATION $=20$ LOG $\frac{V_{\text {OUT }}}{V_{S}}$
Test Circuit 8. Off Isolation


CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$

Test Circuit 10. Channel-to-Channel Crosstalk

## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

## 6-Lead Plastic Surface Mount Package <br> (RT-6)



## 8-Lead $\mu$ SOIC Package <br> (RM-8)

## 2x3 Array for WLCSP

(CB-6)



[^0]:    REV. PrF 01/02

