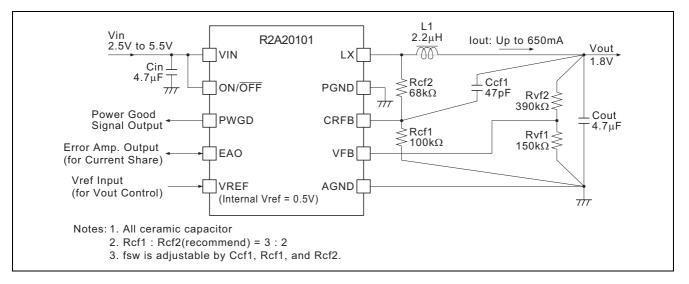
RENESAS

R2A20101BM/NP

Monolithic Synchronous Step-Down DC/DC Converter

REJ03D0790-0300 Rev.3.00 May 14, 2008


Features

- Built-in low Ron power MOS FETs Pch Ron = 0.30Ω (Typ), Nch Ron = 0.14Ω (Typ)
- High switching frequency: 2 MHz (Max)
- Output current: 650 mA (Max)
- Output ON/OFF control
- Vout control
- Power good monitor
- Current share for redundant power supply operation
- Vout = 0.5 V to (VIN 0.5) V

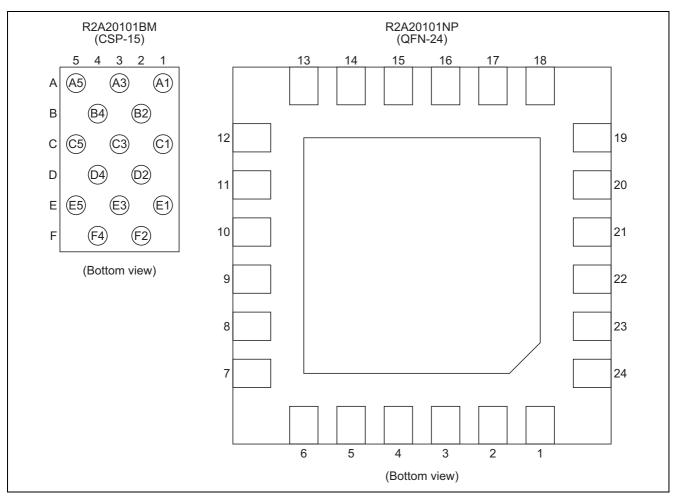
Application

- POL (Point of Load) power supplies
- Power supply for microcomputer systems MCU-Core, I/O, Memory (DDR, SRAM, FLASH, HDD, etc.), FPGA, DSP, Graphic Processor
- Battery powered equipment systems Cellular phone (CDMA power amplifier, MCU, DSP, ASIC), PDA, Digital camera, Portable game, Handy terminal

Operating Circuit Example

Block Diagram

Absolute Maximum Ratings


 $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit	Note	
Power supply voltage	V _{IN}	6	V	1	
ON/OFF, PWGD, EAO, VREF,	V _{MAX}	-0.3 to (V _{IN} + 0.3)	V	1	
LX, CRFB, VFB terminal voltage					
PGND terminal voltage	V _{PGND}	-0.3 to +0.3	V	1	
Operating ambient temperature	Topr(Ta)	-40 to +85	°C		
Junction temperature 1	Tjmax1	+125	°C		
Junction temperature 2	Tjmax2	+150	°C	2	
Storage temperature	Tstg	-55 to +150	°C		

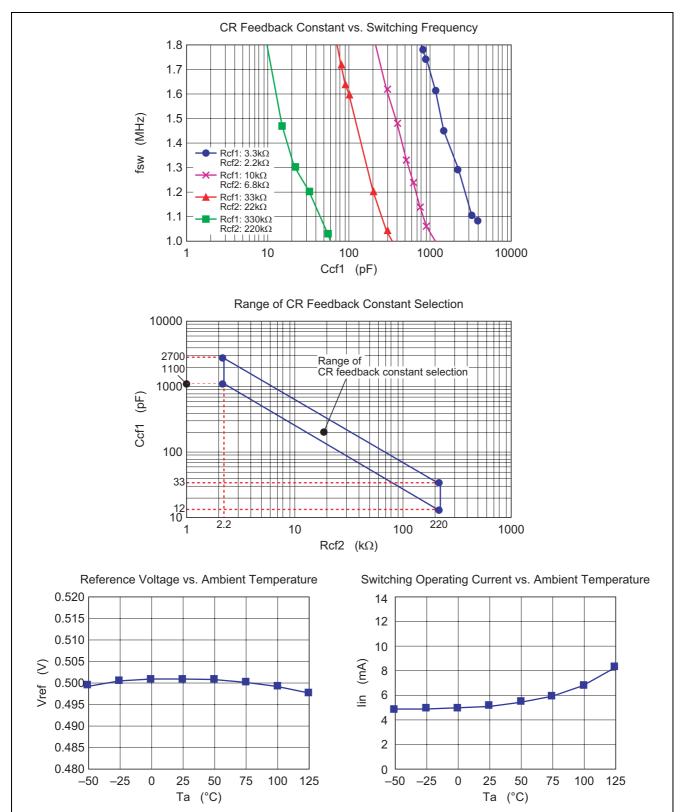
Notes: 1. Rated voltages are with reference to the AGND pin.

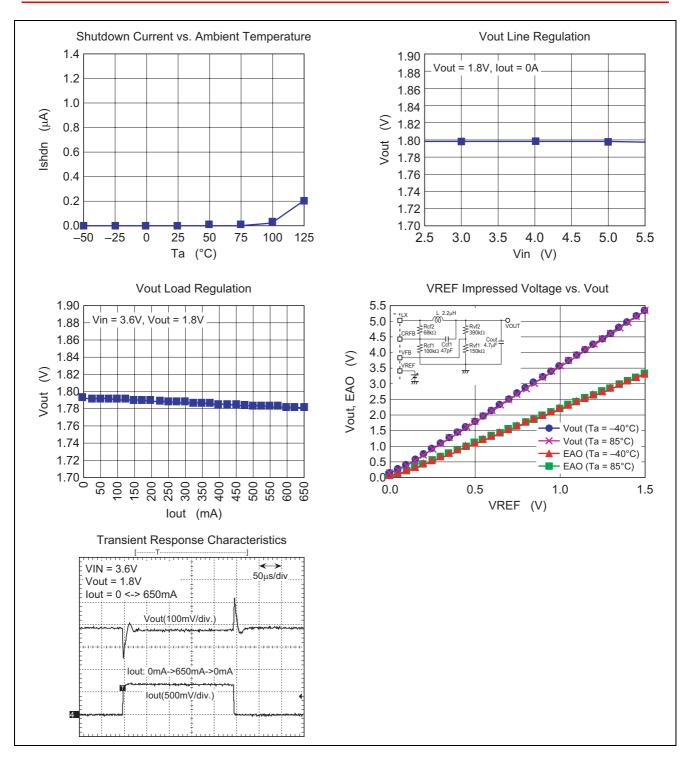
2. Operation by Tjmax2 is made within 24 hours through life.

Pin Arrangement

Pin Description

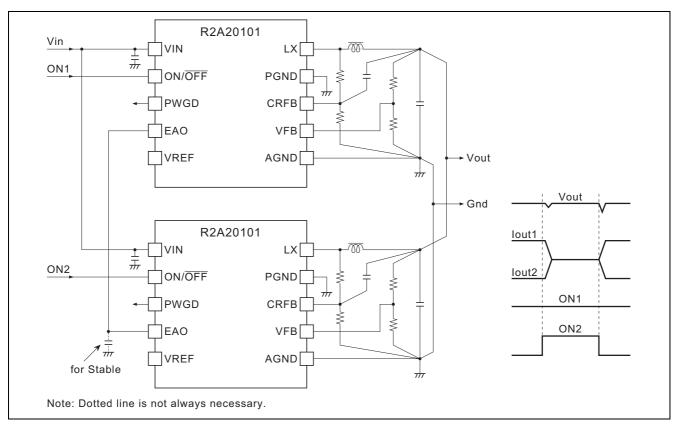
Pin No.					
R2A20101BM (CSP-15)	R2A20101NP (QFN-24)	Pin Name	Pin Function		
A1, A3, A5	15, 16, 17	PGND	Power ground		
B2, B4	11, 20	LX	Inductor connection node		
C1, C3, C5	10, 21	VIN	Power supply voltage input		
D4	22	ON/OFF	Output on/off control input		
D2	9	CRFB	CR feedback input		
E5	23	PWGD	Power good monitor output		
E1	8	VFB	Feedback voltage input		
F4	2	EAO	Error amplifier output (for current share)		
E3	5	VREF	Vout control voltage input		
F2	4	AGND	Analog ground (IC chip ground voltage)		

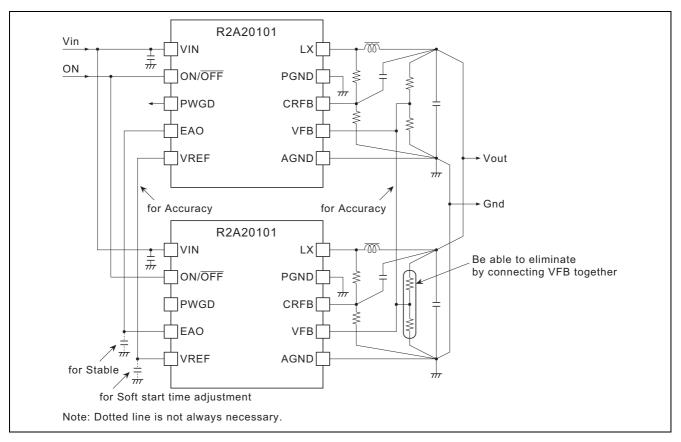

Note: Please apply solder to pins 1, 3, 6, 7, 12, 13, 14, 18, 19, and 24 even though they are NC pins. Solder on the underside pads improves heat-radiation characteristics.


Electrical Characteristics

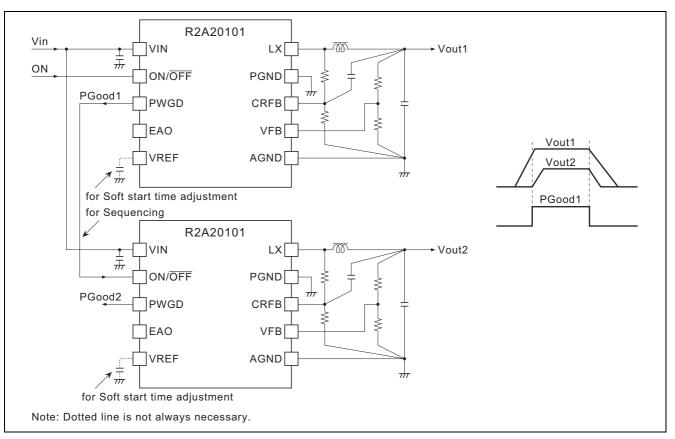
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Input voltage range	Vin	2.5	—	5.5	V	
UVL threshold high	Vuvl-Hi	2.0	2.3	2.5	V	VFB = CRFB = GND,
						Vin = rising
UVL hysteresis	Vuvl-Hys	0.15	0.22	0.29	V	
Quiescent supply current	lss	20	45	80	μA	
Shutdown supply current	Ishdn		0.0	1.0	μA	$ON/\overline{OFF} = 0V$
Reference voltage	Vref	0.485	0.500	0.515	V	
Vref line regulation	dVref/dVin	(-0.4)	0.1	(0)	%/V	Vin = 2.5 to 5.5V
Vref temperature stability	dVref/dTa	_	(±100)	—	ppm/°C	Ta = -40 to +85°C
VREF sink current	lvref-sink	1.3	3.7	8.0	μA	Vref = 2.5V
VREF source current	Ivref-source	0.3	0.9	2.0	μA	Vref = 0V
VFB leakage current	lleak-VFB	-1	0	+1	μΑ	$VFB = 1/2 \times Vin$
Pch FET on resistance	Ron-Pch	_	0.30	0.50	Ω	VFB = CRFB = 0V,
						ILX = -100mA
Nch FET on resistance	Ron-Nch	—	0.14	0.25	Ω	VFB = CRFB = Vin,
						ILX = 100mA
Pch FET leakage current	lleak-Pch	_	—	1.0	μΑ	$ON/\overline{OFF} = 0V, LX = 0V$
Nch FET leakage current	lleak-Nch	_	—	1.0	μΑ	$ON/\overline{OFF} = 0V, LX = Vin$
Peak current limit	Ipeak-Limit	0.7	—		Α	
ON/OFF threshold high	Von/off-Hi	1.0	1.45	1.85	V	ON/OFF = rising
ON/OFF threshold low	Von/off-Lo	0.75	1.24	1.65	V	ON/OFF = falling
ON/OFF leakage current	lleak-on/off	-1	0	+1	μA	ON/OFF = Vin
ON/OFF input current	linput-on/off		1.4	5	μΑ	$ON/\overline{OFF} = 0.9V$
Switching frequency	fsw	Adjustable by external Ccf1, Rcf1, Rcf2		Hz		
Soft start time	tss	$56 \times \text{Rcf1/(Rcf1 + Rcf2)} \times \text{Vout}$			μS	
Power good threshold	Vth-PGood	(–15)	-10	(–5)	%	Vref = 0.5V
Power good VOL	lpg-VOL	20	_	_	μA	PWGD = 0.2V, VFB = 0V
Power good VOH	lpg-VOH	-10	_	_	μΑ	PWGD = 3.4V, VFB = 0.5V
Output voltage load regulation	dVout/dlout	_	±0.7	—	%/A	L = 2.2µH, Vout = 1.8V,
						lout = 0 to 650mA

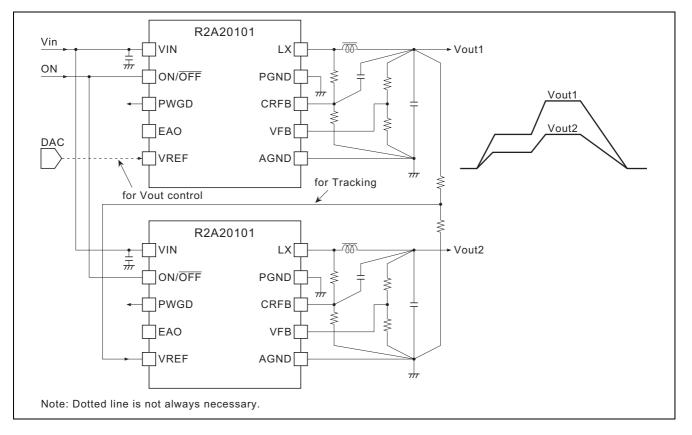
Note: () is design spec.

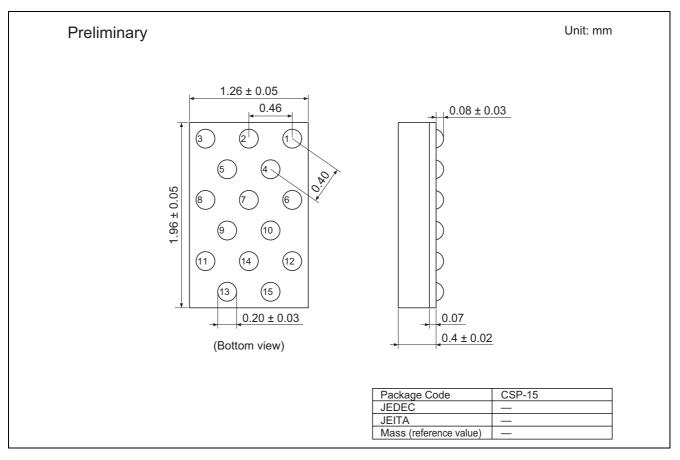

Main Characteristics

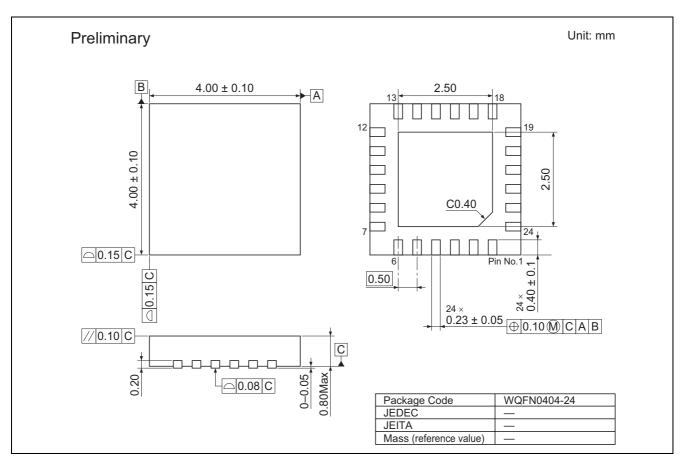


Application Circuit Example


1. Current Share 1 (Redundant, Hot Swap type)


2. Current Share 2 (Accuracy type)


3. Sequential Start-up



4. Tracking

Package Dimensions

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scuch as the development of wapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of wapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whattower for any damages incurred as a construction of the purpose of any damages incurred as a set of the indication diversity of the indication diversity of the state of the date this document.
 When using or otherwise regulations in the information in this document, but Renesas assumes no liability whattower for any damages incurred as a diversity the state of the date this document.
 When using or otherwise regulations in the information in this document, but Renesas as a state and real diversity and the indication diversity.
 When using or otherwise regulation the date data disclosed through Renesas astate and the product state in this docume

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com