

R2A20113DD/SP

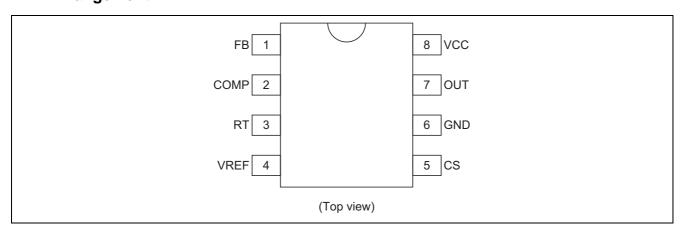
Critical Conduction Mode PFC Control IC

REJ03F0279-0100 Rev.1.00 Oct 10, 2008

Description

The R2A20113 controls a boost converter to provide a active power factor correction.

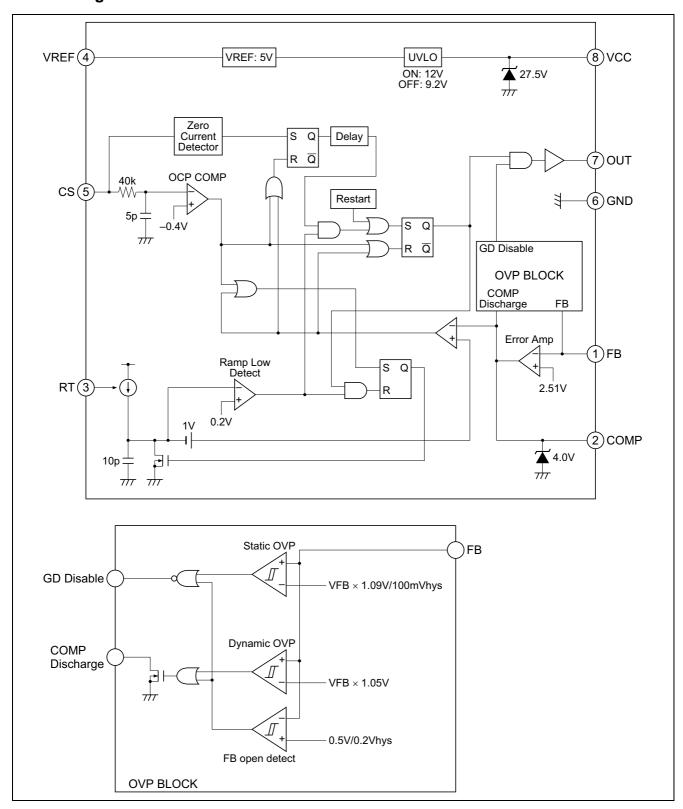
The R2A20113 adopts critical conduction mode for power factor correction and realizes high efficiency and a low switching noise by zero current switching.


Because the zero current is detected by using the GND current, the ZCD Auxiliary winding is unnecessary.

The feedback loop open detection, two mode overvoltage protection, overcurrent protection are built in the R2A20113, and can constitute a power supply system of high reliability with few external parts.

Features

- Absolute Maximum Ratings
 - Supply voltage Vcc: 24 V
 - Operating junction temperature Tjopr: –40 to +150°C
- Electrical characteristics
 - UVLO operation start voltage VH: 12 V \pm 0.8 V
 - UVLO operation shutdown voltage VL: $9.2 \text{ V} \pm 0.7 \text{ V}$
 - UVLO hysteresis voltage Hysuvl: $2.8 \text{ V} \pm 0.7 \text{ V}$
- Functions
 - Boost converter control with critical conduction mode
 - Two mode overvoltage protection
 - Mode1: Dynamic OVP corresponding to a voltage rise by load change
 - Mode2: Static OVP corresponding to overvoltage in stable
 - Feedback loop open detection
 - Overcurrent protection
 - Package lineup: Pb-free SOP-8 (JEDEC)/DILP-8


Pin Arrangement

Pin Functions

Pin No.	Pin Name	Input/Output	Function
1	FB	Input	Error amplifier input terminal
2	COMP	Output	Error amplifier output terminal
3	RT	Input/Output	A resistor connection terminal for RAMP current setting
4	VREF	Output	Reference voltage output terminal
5	CS	Input	Zero current detection and overcurrent detection input terminal
6	GND	_	Ground
7	OUT	Output	Power MOSFET drive terminal
8	VCC	Input	Supply voltage terminal

Block Diagram

Absolute Maximum Ratings

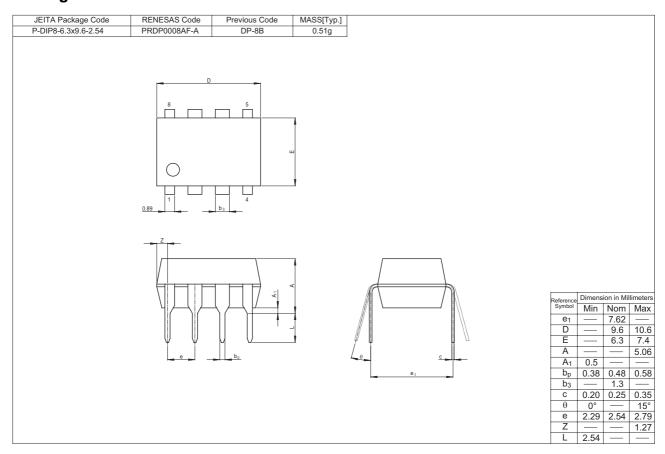
 $(Ta = 25^{\circ}C)$

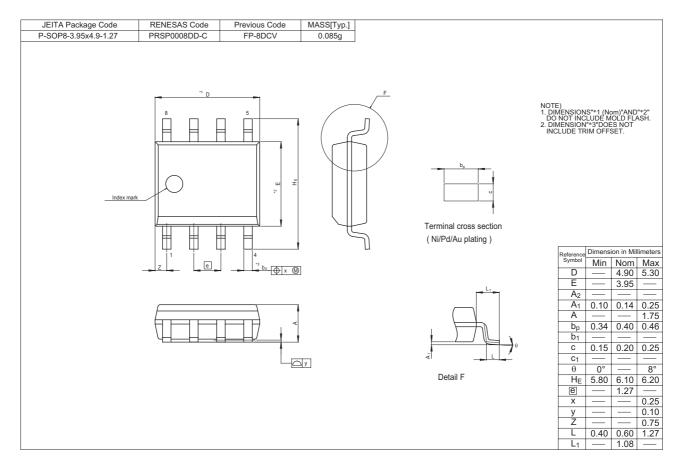
11	0	1114	<u> </u>	
Item	Symbol	Ratings	Unit	Note
Supply voltage	Vcc	-0.3 to 24	V	
OUT peak current	lpk-out	±0.9	Α	3
OUT DC current	Idc-out	±100	mA	
COMP terminal current	Icomp	±1	mA	
RT terminal current	Irt	-50	μΑ	
Vref terminal current	Iref	- 5	mA	
Vref terminal voltage	Vt-ref	-0.3 to Vref + 0.3	V	
FB terminal voltage	Vt-fb	-0.3 to +5	V	
CS terminal voltage	Vcs	-1.5 to +0.3	V	
Power dissipation	Pt	0.68	W	4
Operating junction temperature	Tj-opr	-40 to +150	°C	
Storage temperature	Tstg	-55 to +150	°C	

Notes: 1. Rated voltages are with reference to the GND terminal.

- 2. For rated currents, inflow to the IC is indicated by (+), and outflow by (-).
- 3. Shows the transient current when driving a capacitive load.
- 4. In case of R2A20113DD (DILP): θ ja = 120°C/W In case of R2A20113SP (SOP): θ ja = 120°C/W

This value is a thing mounting on $40 \times 40 \times 1.6$ [mm], a glass epoxy board of wiring density 10%.


Electrical Characteristics


 $(Ta = 25^{\circ}C, Vcc = 12 V, CS = GND, FB = COMP, RRT = 200 k\Omega)$

	Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Supply	UVLO turn-on threshold	Vuvlh	11.2	12	12.8	V	
	UVLO turn-off threshold	VuvII	8.5	9.2	9.9	V	
	UVLO hysteresis	Hysuvl	2.1	2.8	3.5	V	
	Standby current	Istby	_	95	180	μΑ	Vcc = Vuvlh - 0.2 V
	Operating current	Icc	_	2.6	4	mA	
VREF	Reference voltage	Vref	4.85	5.00	5.15	V	Isource = 0 mA
	Line regulation	Vref-line	_	5	20	mV	Isource = 0 mA,
							Vcc = 10 V to 24 V
	Load regulation	Vref-load	_	5	20	mV	Isource = 0 mA to -5 mA
	Temperature stability	dVref	_	±80	_	ppm/°C	Ta = -40 to 125° C * ¹
Error	Feedback voltage	Vfb	2.41	2.51	2.61	V	FB-COMP short
amplifier	Input bias current	Ifb	0.1	0.25	0.75	μА	Measured pin: FB
	Open loop gain	Av	_	55	_	dB	*1
	Upper clamp voltage	Vclamp-comp	3.75	4.0	4.25	V	FB = 2.0 V, COMP: Open
	Low voltage	VI-comp	_	0.1	0.3	V	FB = 3.0 V, COMP: Open
	Source current	Isrc-comp	-185	-120	-40	μΑ	FB = 1 V, COMP = 2.5 V
	Sink current 1	Isnkcomp1	_	120	_	μΑ	*1
	Sink current 2	Isnkcomp2	180	300	450	μΑ	FB = 3.5 V, COMP = 2.5 V
	Transconductance	gm	90	150	220	μS	FB = 2.5 V,
							COMP = 2.5 V
RT	RAMP offset voltage	Voff-ramp	_	1.0	_	V	*1
	RT voltage	V-rt	1.8	2.0	2.2	V	RT = 200 kΩ
Zero	ZCD threshold voltage	Vzcd	-8	-2	0	mV	
current	Input bias current	Ics	-80	-47	-20	μΑ	Vcs = 0 V
detector							
Restart	Restart time delay	Tstart	65	130	280	μS	FB = 2.0 V, COMP = 2.5 V
OUT	Rise time	tr-out	_	30	100	ns	CL = 1000 pF, FB = 2.0 V, COMP = 2.5 V
	Fall time	tf-out	_	30	100	ns	CL = 1000 pF, FB = 2.0 V, COMP = 2.5 V
	OUT low voltage	Vol1-out	_	0.08	0.2	V	Isink = 20 mA
	· ·	Vol2-out	_	0.05	0.7	V	Isink = 10 mA, Vcc = 5 V
	OUT high voltage	Voh-out	11.5	11.9	_	V	Isource = -20 mA *1
Over current protection	OCP threshold voltage	Vocp	-0.44	-0.4	-0.36	V	
Over	Dynamic OVP threshold	Vdovp	VFB×	VFB×	VFB×	V	
voltage	voltage	·	1.035	1.050	1.065		
protection	Static OVP threshold	Vsovp	VFB×	VFB×	VFB×	V	COMP = Open
	voltage		1.075	1.090	1.105		
	Static OVP hysteresis	Hys-sovp	50	100	150	mV	COMP = Open
	FB open detect threshold voltage	Vfbopen	0.45	0.50	0.55	V	COMP = Open
	FB open detect hysteresis	Hysfbopen	0.16	0.20	0.24	V	COMP = Open

Note: 1. Design spec.

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510