

# M62440FP

# Electric Volume Control with Tone Controller for 4-Speaker Applications

REJ03F0211-0201 Rev.2.01 Mar 31, 2008

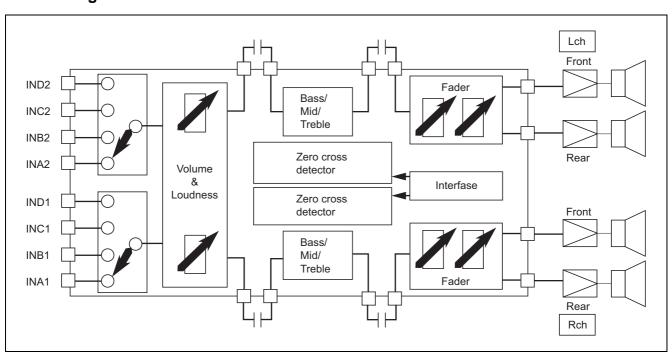
#### **Description**

The M62440FP is an IC developed for car audio, it has a built-in 4ch input selector, master volume, loudness, tone control and fader volume blocks. All of these blocks are controlled via serial data. Thank to the used zero crossing detector, very low click noise are obtained.

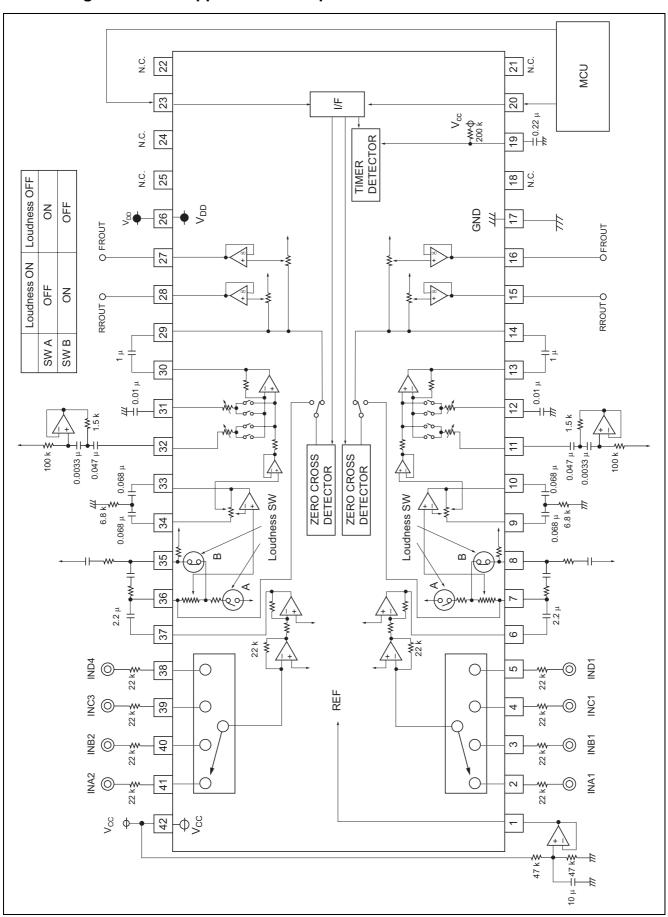
#### **Features**

- Built-in zero cross detector prevents click noise
- 4-input selector
- Loudness
- Tone control bass/Mid/Treble
- Master volume/Fader Volume
- Serial data control

#### **Recommended Operating Conditions**


Supply voltage range:  $V_{CC} = 6$  to 9 V

 $V_{DD} = 4 \text{ to } 6 \text{ V}$ 

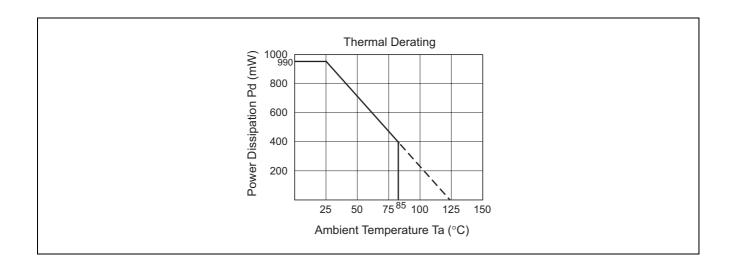

Rated supply voltage:  $V_{CC} = 8 \text{ V}$ 

 $V_{\rm DD} = 5 \text{ V}$ 

#### **Block Diagram**



### **Pin Configuration and Application Example**

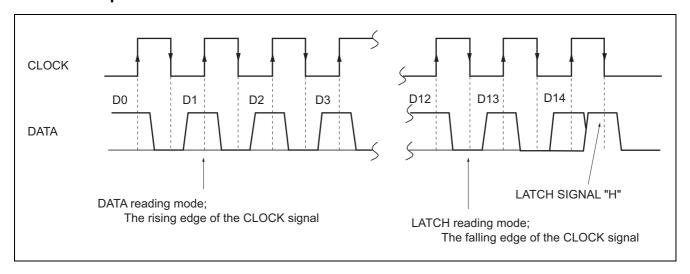



# **Pin Description**

| Pin No. | Symbol          | Function                                                               |  |
|---------|-----------------|------------------------------------------------------------------------|--|
| 1       | REF             | IC signal ground. Apply 1/2 V <sub>CC</sub>                            |  |
| 2       | INA1            | Input pin for channel 1 of the input selector switch block             |  |
| 3       | INB1            |                                                                        |  |
| 4       | INC1            |                                                                        |  |
| 5       | IND1            |                                                                        |  |
| 6       | SELECT OUT1     | Output pin of the input selector switch block                          |  |
| 7       | VOL IN1         | Input pin of the volume block                                          |  |
| 8       | LOUD IN1        | Pin for setting the frequency characteristics of the loudness block    |  |
| 9       | BASSA1          | Pin for setting the frequency characteristics of the tone (Bass) block |  |
| 10      | BASSB1          |                                                                        |  |
| 11      | MID1            | R-ladder terminal of tone (Mid)                                        |  |
| 12      | TRE1            | R-ladder terminal of tone (Treble)                                     |  |
| 13      | TONE OUT1       | Output pin of the tone block                                           |  |
| 14      | FADER IN1       | Input pin of the fader volume                                          |  |
| 15      | REAR OUT1       | Output pin of the fader volume (Rear)                                  |  |
| 16      | FRONT OUT1      | Output pin of the fader volume (Front)                                 |  |
| 17      | GND             | Ground                                                                 |  |
| 18      | N.C.            | Non Connection                                                         |  |
| 19      | TIM1            | Timer setting terminal                                                 |  |
|         |                 | The relationship between outside parts                                 |  |
|         |                 | C and setting time is $T = 13.8 \times 10^4 \bullet C$ (s).            |  |
| 20      | DATA            | Input pin of the control data                                          |  |
| _0      |                 | This pin inputs data in synchronization with CLOCK                     |  |
| 21      | N.C.            | Non Connection                                                         |  |
| 22      | N.C.            | Non Connection                                                         |  |
| 23      | CLOCK           | Clock input pin for serial data transfer                               |  |
| 24      | N.C.            | Non Connection                                                         |  |
| 25      | N.C.            | Non Connection                                                         |  |
| 26      | V <sub>DD</sub> | Digital power supply pin, normally +5 V                                |  |
| 27      | FRONT OUT2      | Output pin of the fader volume (Front)                                 |  |
| 28      | REAR OUT2       | Output pin of the fader volume (Rear)                                  |  |
| 29      | FADER IN2       | Input pin of the fader volume                                          |  |
| 30      | TONE OUT2       | Output pin of the tone block                                           |  |
| 31      | TRE2            | R-ladder terminal of tone (Treble)                                     |  |
| 32      | MID2            | R-ladder terminal of tone (Mid)                                        |  |
| 33      | BASSB2          | Pin for setting the frequency characteristics of the tone (Bass) block |  |
| 34      | BASSA2          | in tot setting the frequency characteristics of the tone (bass) block  |  |
| 35      | LOUD IN2        | Pin for setting the frequency characteristics of the loudness block    |  |
|         | VOL IN2         | Input pin of the volume block                                          |  |
| 36      |                 |                                                                        |  |
| 37      | SELECT OUT2     | Output pin of the input selector switch block                          |  |
| 38      | IND2            | Input pin for channel 2 of the input selector switch block             |  |
| 39      | INC2            | _                                                                      |  |
| 40      | INB2            |                                                                        |  |
| 41      | INA2            |                                                                        |  |
| 42      | Vcc             | Analog power supply pin                                                |  |

# **Absolute Maximum Ratings**

| Item                   | Symbol           | Ratings    | Unit  | Conditions |
|------------------------|------------------|------------|-------|------------|
| Supply voltage         | $V_{CC}, V_{DD}$ | 10, 7      | V     | _          |
| Power dissipation      | Pd               | 990        | mW    | Ta ≤ 25°C  |
| Thermal derating ratio | Kθ               | 9.9        | mW/°C | Ta ≥ 25°C  |
| Operating temperature  | Topr             | -30 to 85  | °C    | _          |
| Storage temperature    | Tstg             | -55 to 125 | °C    | _          |



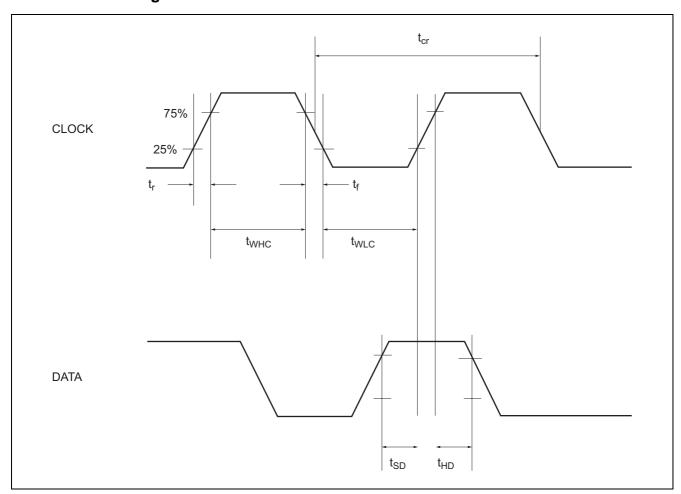

### **Electrical Characteristics**

Ta = 25°C,  $V_{CC} = 8$  V,  $V_{DD} = 5$  V, VOL/FADER = 0 dB, TONE/FLAT, Loudness OFF unless otherwise noted

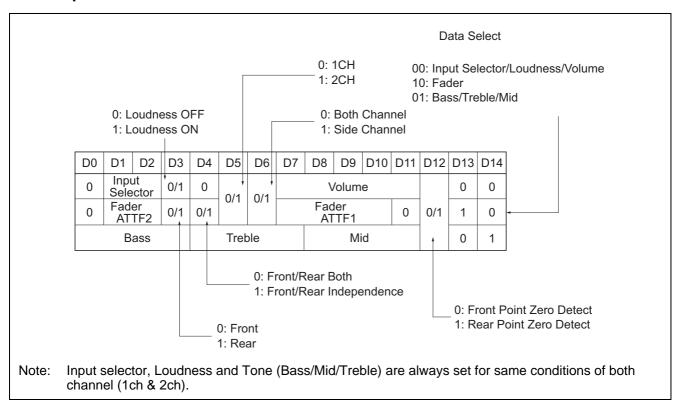
|                       |                        | Limits |      |       |       |                                               |
|-----------------------|------------------------|--------|------|-------|-------|-----------------------------------------------|
| Item                  | Symbol                 | Min    | Тур  | Max   | Unit  | Test Conditions                               |
| Circuit current       | Icc                    | _      | 20   | 35    | mA    | No input signal                               |
| Pass gain             | Gv                     | -3.5   | 0    | 3.5   | dB    | Outside resister 22 k $\Omega$ of pin 2 to 5, |
|                       |                        |        |      |       |       | pin 38 ~ 41                                   |
| Maximum attenuation   | A <sub>TT</sub> (VOL)  | -32.5  | -30  | -27.5 | dB    | Vi = 1 Vrms, f = 1 kHz                        |
|                       |                        |        |      |       |       | ATT (VOL) = $-30 \text{ dB}$                  |
| Attenuation error     | ΔA <sub>TT</sub> (VOL) | -2.5   | 0    | 2.5   | dB    | ATT (VOL) = 0 dB                              |
| Maximum input voltage | V <sub>IM</sub>        | 1.8    | 2.2  | _     | Vrms  | f = 1 kHz, BW: 400 ~ 30 kHz                   |
|                       |                        |        |      |       |       | THD = 1%                                      |
| Bass boost            | G (Bass) B             | 13     | 16   | 19    | dB    | f = 100 Hz                                    |
| Bass cut              | G (Bass) C             | -15    | -12  | -9    | dB    | f = 100 Hz                                    |
| MID boost             | G (MID) B              | 9      | 12   | 15    | dB    | f = 1 kHz                                     |
| MID cut               | G (MID) C              | -15    | -12  | -9    | dB    | f = 1 kHz                                     |
| Treble boost          | G (Tre) B              | 9      | 12   | 15    | dB    | f = 10 kHz                                    |
| Treble cut            | G (Tre) C              | -15    | -12  | -9    | dB    | f = 10 kHz                                    |
| Maximum attenuation   | A <sub>TT</sub> (FED)  | _      | -90  | -80   | dB    | Vi = 1 Vrms, f = 1 kHz                        |
|                       |                        |        |      |       |       | ATT (FED) = $-\infty$ dB                      |
| Maximum output        | V <sub>OM</sub>        | 1.8    | 2.2  | _     | Vrms  | f = 1 kHz, BW: 400 to 30 kHz                  |
| voltage               |                        |        |      |       |       | THD = 1%                                      |
| Output noise voltage  | V <sub>no</sub> 1      | _      | 10   | 18    | μVrms | Rg = 0, DIN-AUDIO                             |
|                       | V <sub>no</sub> 2      | _      | 3    | 8     |       | ATT (VOL) = $-30 \text{ dB}$                  |
|                       |                        |        |      |       |       | ATT (FED) = $-\infty$ dB                      |
|                       |                        |        |      |       |       | Rg = 0, DIN-AUDIO                             |
| Total harmonic        | THD                    | _      | 0.01 | 0.05  | %     | f = 1 kHz, Vo = 0.5 Vrms                      |
| distortion            |                        |        |      |       |       | BW: 400 Hz to 30 kHz                          |
| Channel separation    | CS                     |        | -90  | -80   | dB    | f = 1 kHz                                     |
| Cross talk of input   | СТ                     | _      | -75  | -65   | dB    | f = 1 kHz                                     |
| selector              |                        |        |      |       |       |                                               |
| Voltage gain of       | G (LOUD) L             | 7.0    | 11.0 | 15.0  | dB    | Loudness ON                                   |
| loudness              |                        |        |      |       |       | f = 100 Hz, ATT (VOL) = -30 dB                |
|                       | G (LOUD) H             | 3.5    | 6.5  | 9.5   |       | Loudness ON                                   |
|                       |                        |        |      |       |       | f = 10 kHz, ATT (VOL) = -30 dB                |

### **Relationship between Data and Clock**




# **Digital Circuit DC Characteristics**

|                         |                 | Limits              |     |                     |      |                |                  |  |
|-------------------------|-----------------|---------------------|-----|---------------------|------|----------------|------------------|--|
| Item                    | Symbol          | Min                 | Тур | Max                 | Unit | Те             | st Conditions    |  |
| "L" level input voltage | $V_{IL}$        | 0                   | ~   | 0.2 V <sub>DD</sub> | V    | DATA, CLO      | OCK pins         |  |
| "H" level input voltage | V <sub>IH</sub> | 0.8 V <sub>DD</sub> | ~   | $V_{DD}$            |      |                |                  |  |
| "L" level input current | I <sub>IL</sub> | -10                 | _   | 10                  | μΑ   | $V_I = 0$      | DATA, CLOCK pins |  |
| "H" level input current | I <sub>IH</sub> | _                   | _   | 10                  |      | $V_I = V_{DD}$ |                  |  |


### **Digital Circuit AC Characteristics**

|                               |                  | Limits |     |     |      |
|-------------------------------|------------------|--------|-----|-----|------|
| ltem                          | Symbol           | Min    | Тур | Max | Unit |
| CLOCK cycle time              | t <sub>cr</sub>  | 4      | _   | _   | μS   |
| CLOCK pulse width ("H" level) | t <sub>WHC</sub> | 1.6    | _   | _   |      |
| CLOCK pulse width ("L" level) | t <sub>WLC</sub> | 1.6    | _   | _   |      |
| CLOCK rise time               | t <sub>r</sub>   | _      | _   | 0.4 |      |
| CLOCK fall time               | t <sub>f</sub>   | _      | _   | 0.4 | ]    |
| DATA setup time               | t <sub>SD</sub>  | 0.8    | _   | _   |      |
| DATA hold time                | t <sub>HD</sub>  | 0.8    | _   | _   |      |

# **Clock Data Timing**



### **Data Input Format**



#### **Volume Code**

| ATT V1 | D7 | D8 | D9 |
|--------|----|----|----|
| 0 dB   | 1  | 0  | 1  |
| –4 dB  | 0  | 0  | 1  |
| −8 dB  | 1  | 1  | 0  |
| –12 dB | 0  | 1  | 0  |
| –16 dB | 1  | 0  | 0  |
| –20 dB | 0  | 0  | 0  |
| –24 dB | 0  | 1  | 1  |
| –28 dB | 1  | 1  | 1  |

| ATT V2 | D10 | D11 |
|--------|-----|-----|
| 0 dB   | 1   | 1   |
| −1 dB  | 0   | 1   |
| −2 dB  | 1   | 0   |
| −3 dB  | 0   | 0   |

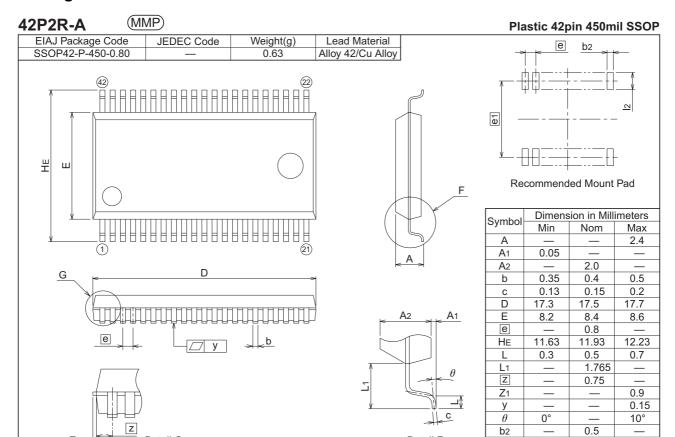
### **Fader Code**

| ATT F1 | D7 | D8 | D9 | D10 |
|--------|----|----|----|-----|
| 0 dB   | 1  | 0  | 0  | 1   |
| –8 dB  | 1  | 1  | 1  | 0   |
| –16 dB | 0  | 1  | 1  | 0   |
| –24 dB | 1  | 0  | 1  | 0   |
| –32 dB | 0  | 0  | 1  | 0   |
| -40 dB | 1  | 1  | 0  | 0   |
| –48 dB | 0  | 1  | 0  | 0   |
| –56 dB | 1  | 0  | 0  | 0   |
| –∞ dB  | 0  | 0  | 0  | 0   |

| ATT F2 | D1 | D2 |
|--------|----|----|
| 0 dB   | 1  | 1  |
| –2 dB  | 0  | 1  |
| –4 dB  | 1  | 0  |
| −6 dB  | 0  | 0  |

### **Tone Code**

| Bass   | D0 | D1 | D2 | D3 |
|--------|----|----|----|----|
| 16 dB  | 0  | 0  | 0  | 1  |
| 14 dB  | 1  | 1  | 1  | 0  |
| 12 dB  | 0  | 1  | 1  | 0  |
| 10 dB  | 1  | 0  | 1  | 0  |
| 8 dB   | 0  | 0  | 1  | 0  |
| 6 dB   | 1  | 1  | 0  | 0  |
| 4 dB   | 0  | 1  | 0  | 0  |
| 2 dB   | 1  | 0  | 0  | 0  |
| 0 dB   | 0  | 0  | 0  | 0  |
| −2 dB  | 1  | 0  | 0  | 1  |
| −4 dB  | 0  | 1  | 0  | 1  |
| −6 dB  | 1  | 1  | 0  | 1  |
| −8 dB  | 0  | 0  | 1  | 1  |
| –10 dB | 1  | 0  | 1  | 1  |
| −12 dB | 0  | 1  | 1  | 1  |


| Treble | D4 | D5 | D6 | D7 |
|--------|----|----|----|----|
| 12 dB  | 0  | 1  | 1  | 0  |
| 10 dB  | 1  | 0  | 1  | 0  |
| 8 dB   | 0  | 0  | 1  | 0  |
| 6 dB   | 1  | 1  | 0  | 0  |
| 4 dB   | 0  | 1  | 0  | 0  |
| 2 dB   | 1  | 0  | 0  | 0  |
| 0 dB   | 0  | 0  | 0  | 0  |
| −2 dB  | 1  | 0  | 0  | 1  |
| -4 dB  | 0  | 1  | 0  | 1  |
| −6 dB  | 1  | 1  | 0  | 1  |
| −8 dB  | 0  | 0  | 1  | 1  |
| -10 dB | 1  | 0  | 1  | 1  |
| –12 dB | 0  | 1  | 1  | 1  |

| Mid    | D8 | D9 | D10 | D11 |
|--------|----|----|-----|-----|
| 12 dB  | 0  | 1  | 1   | 0   |
| 10 dB  | 1  | 0  | 1   | 0   |
| 8 dB   | 0  | 0  | 1   | 0   |
| 6 dB   | 1  | 1  | 0   | 0   |
| 4 dB   | 0  | 1  | 0   | 0   |
| 2 dB   | 1  | 0  | 0   | 0   |
| 0 dB   | 0  | 0  | 0   | 0   |
| −2 dB  | 1  | 0  | 0   | 1   |
| −4 dB  | 0  | 1  | 0   | 1   |
| −6 dB  | 1  | 1  | 0   | 1   |
| −8 dB  | 0  | 0  | 1   | 1   |
| -10 dB | 1  | 0  | 1   | 1   |
| –12 dB | 0  | 1  | 1   | 1   |

# **Input Selector**

| Input Selector | D1 | D2 |
|----------------|----|----|
| D (5, 38 pin)  | 1  | 1  |
| C (4, 39 pin)  | 1  | 0  |
| B (3, 40 pin)  | 0  | 1  |
| A (2, 41 pin)  | 0  | 0  |

### **Package Dimensions**



Detail F

**e**1

12

11.43

1.27

Detail G

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

  1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

  3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the description of the such and the procedure of the description of the such and the procedure of the description of the description of the such as the such and the procedure of the description of the such as the such and the procedure of the such and



#### **RENESAS SALES OFFICES**

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

#### Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

**Renesas Technology Taiwan Co., Ltd.** 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510