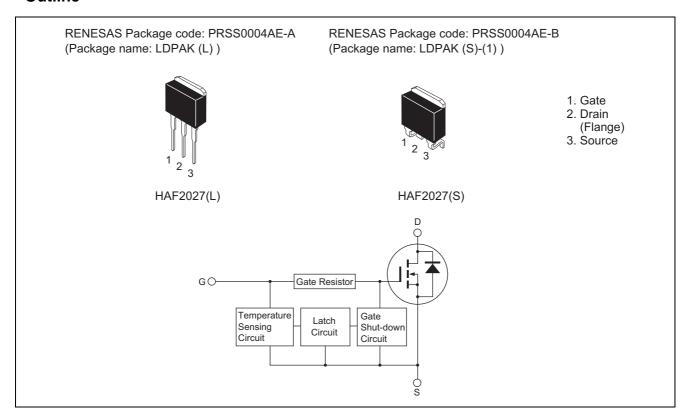


HAF2027(L), HAF2027(S)

Silicon N Channel Power MOS FET Power Switching

REJ03G1674-0100 Rev.1.00 May 19, 2008


Description

This FET has the over temperature shut-down capability sensing to the junction temperature. This FET has the built-in over temperature shut-down circuit in the gate area. And this circuit operation to shut-down the gate voltage in case of high junction temperature like applying over power consumption, over current etc..

Features

- Logic level operation (4 V Gate drive)
- Built-in the over temperature shut-down circuit
- High endurance capability against to the shut-down circuit
- Latch type shut down operation (need 0 voltage recovery)

Outline

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit
Drain to source voltage	V_{DSS}	60	V
Gate to source voltage	V_{GSS}	16	V
Gate to source voltage	V_{GSS}	-2.5	V
Drain current	I _D	50	Α
Drain peak current	I _D (pulse) Note1	100	Α
Body-drain diode reverse drain current	I _{DR}	50	Α
Cannel dissipation	Pch ^{Note2}	100	W
Cannel temperature	Tch	150	°C
Storage temperature	Tstg	−55 to +150	°C

Notes: 1. PW ≤ 10ms, duty cycle ≤ 1 %

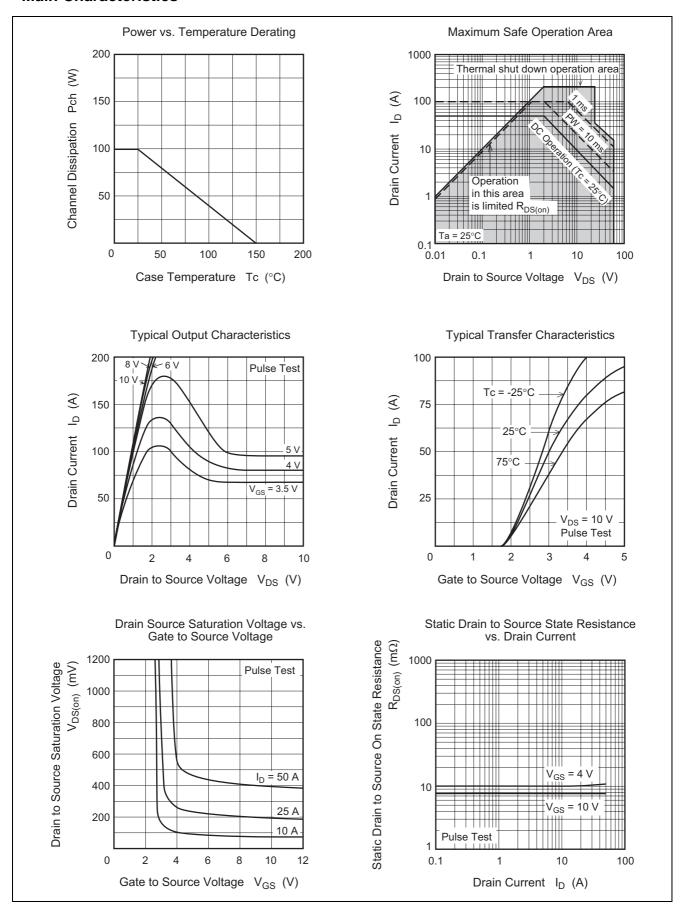
2. Value at Tc = 25°C

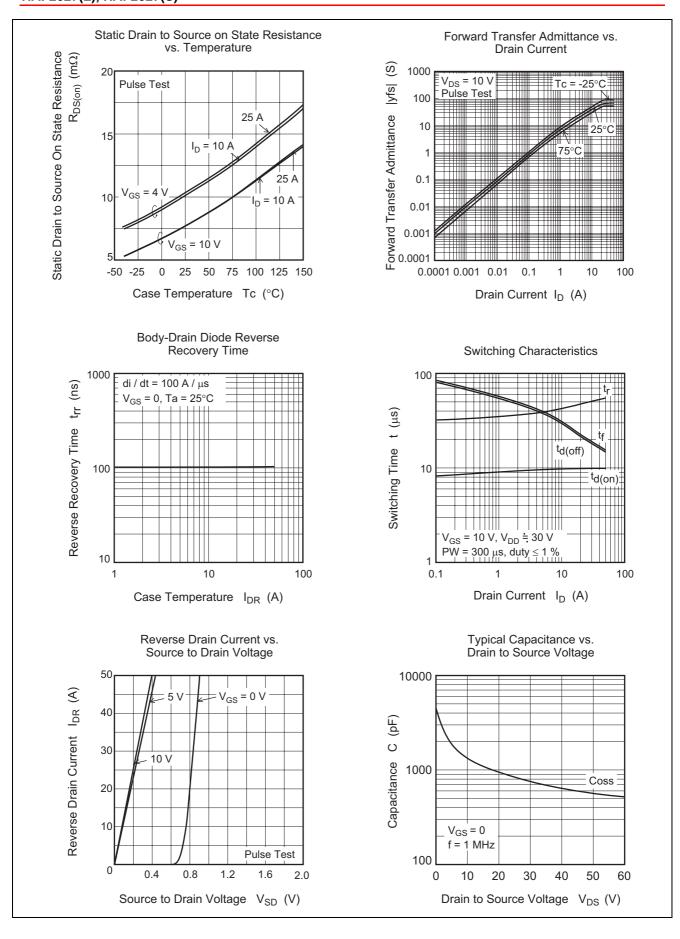
Typical Operation Characteristics

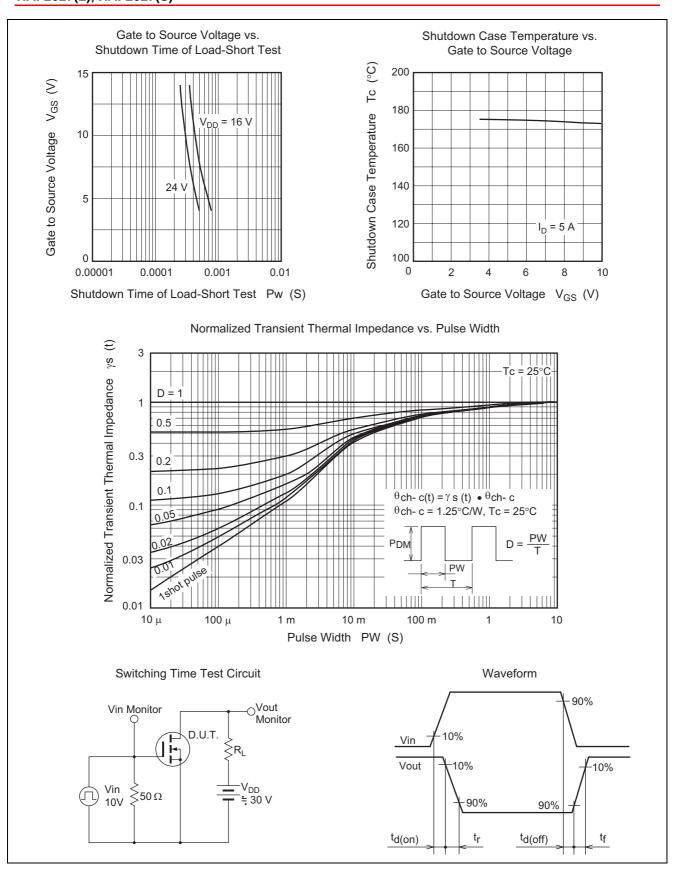
(Ta=25°C)

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Input voltage	V _{IH}	3.5	_	_	V	
	V _{IL}	_	_	1.2	V	
Input current (Gate non shut down)	I _{IH1}	_	_	100	μΑ	$Vi = 6 V, V_{DS} = 0$
	I _{IH2}	_	_	50	μΑ	$Vi = 3.5 V, V_{DS} = 0$
	I _{IL}	_	_	1	μΑ	Vi = 1.2 V, V _{DS} = 0
Input current	I _{IH(sd)1}	_	0.6	_	mA	$Vi = 6 V, V_{DS} = 0$
(Gate shut down)	I _{IH(sd)2}	_	0.35	_	mA	$Vi = 3.5 V, V_{DS} = 0$
Shut down temperature	Tsd	_	175	_	°C	Cannel temperature
Gate operation voltage	Vop	3.5	_	12	V	

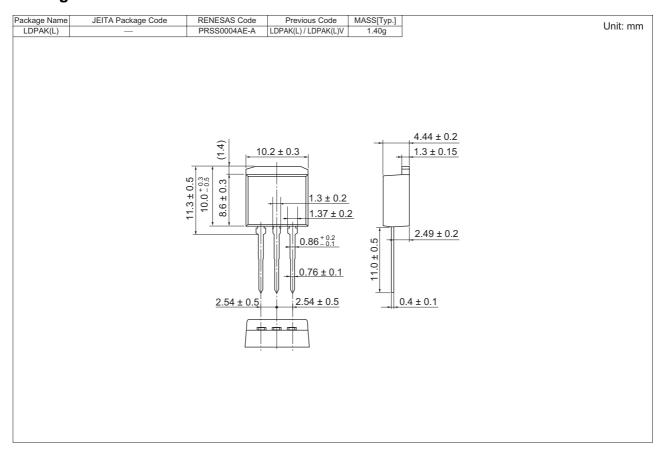
Electrical Characteristics

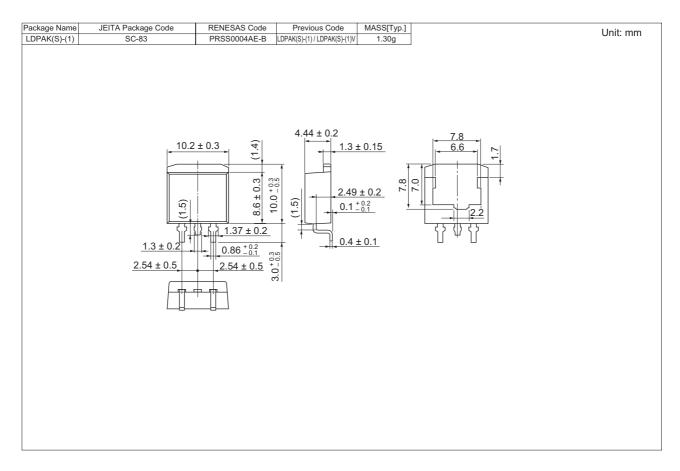

 $(Ta = 25^{\circ}C)$


Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain current	I _{D1}	80	_	_	Α	$V_{GS} = 6 \text{ V}, V_{DS} = 10 \text{ V}^{\text{Note3}}$
	I _{D2}	15	_	_	Α	$V_{GS} = 3.5 \text{ V}, V_{DS} = 10 \text{ V}^{Note3}$
	I _{D3}	_	_	10	mA	V _{GS} = 1.2 V, V _{DS} = 10 V Note3
Drain to source breakdown voltage	V _{(BR)DSS}	60	_	_	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown	V _{(BR)GSS}	16	_	_	V	$I_{G} = 300 \mu A, V_{DS} = 0$
voltage	V _{(BR)GSS}	-2.5	_	_	V	$I_{G} = -100 \mu A, V_{DS} = 0$
Gate to source leak current	I _{GSS1}	_	_	100	μΑ	$V_{GS} = 6 \text{ V}, V_{DS} = 0$
	I _{GSS2}	_	_	50	μA	$V_{GS} = 3.5 \text{ V}, V_{DS} = 0$
	I _{GSS3}	_	_	1	μΑ	V _{GS} = 1.2 V, V _{DS} = 0
	I _{GSS4}	_	_	-100	μΑ	$V_{GS} = -2.4 \text{ V}, V_{DS} = 0$
Input current (shut down)	I _{GS(OP)1}		0.6	_	mA	V _{GS} = 6 V, V _{DS} = 0
	I _{GS(OP)2}	_	0.35	_	mA	$V_{GS} = 3.5 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	_	_	10	μΑ	V _{DS} = 60 V, V _{GS} = 0
Gate to source cut off voltage	V _{GS(off)}	1.0	_	2.25	V	V _{DS} = 10 V, I _D = 1 mA
Forward transfer admittance	y _{fs}	15	65	_	S	$I_D = 25 \text{ A}, V_{DS} = 10 \text{ V}^{\text{Note3}}$
Static drain to source on state	R _{DS(on)}		7.7	10	mΩ	$I_D = 25 \text{ A}, V_{GS} = 10 \text{ V}^{\text{Note3}}$
resistance	R _{DS(on)}	_	10.3	15	mΩ	I _D = 25 A, V _{GS} = 4 V Note3
Output capacitance	Coss	_	1423	_	pF	$V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1 \text{MHz}$
Turn-on delay time	t _{d(on)}	_	10	_	μs	$V_{GS} = 10 \text{ V}, I_{D} = 25 \text{ A}, R_{L} = 1.2 \Omega$
Rise time	t _r	_	48	_	μs	
Turn off delay time	t _{d(off)}	_	22	_	μs	
Fall time	t _f	_	23	_	μs	
Body-drain diode forward voltage	V_{DF}	_	0.9	_	V	I _F = 50 A, V _{GS} = 0
Body-drain diode reverse recovery time	t _{rr}	_	102	_	ns	$I_F = 50 \text{ A}, V_{GS} = 0, di_F/dt = 100 \text{ A}/\mu\text{s}$
Over load shut down	t _{os1}	_	0.7	_	ms	V _{GS} = 5 V, V _{DD} = 16 V
operation time Note4	t _{os2}	_	0.43	_	ms	V _{GS} = 5 V, V _{DD} = 24 V


Notes: 3. Pulse test

^{4.} Including the junction temperature rise of the over lorded condition.


Main Characteristics



Package Dimensions

HAF2027(L), HAF2027(S)

Ordering Information

Part No. Quantity		Shipping Container		
HAF2027-90STL-E	1000 pcs/Reel	Taping (Reel)		
HAF2027-90STR-E	1000 pcs/Reel	Taping (Reel)		

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510