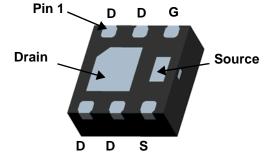
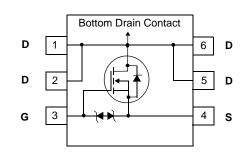
FAIRCHILD

SEMICONDUCTOR®

September 2008


FDMA410NZ


Single N-Channel 1.5 V Specified PowerTrench[®] MOSFET 20 V, 9.5 A, 23 m Ω

Features

- Max $r_{DS(on)}$ = 23 m Ω at V_{GS} = 4.5 V, I_D = 9.5 A
- Max $r_{DS(on)}$ = 29 m Ω at V_{GS} = 2.5 V, I_D = 8.0 A
- Max $r_{DS(on)}$ = 36 m Ω at V_{GS} = 1.8 V, I_D = 4.0 A
- Max $r_{DS(on)}$ = 50 m Ω at V_{GS} = 1.5 V, I_D = 2.0 A
- HBM ESD protection level > 2.5 kV (Note 3)
- Low Profile-0.8 mm maximum in the new package MicroFET 2x2 mm
- RoHS Compliant

This Single N-Channel MOSFET has been designed using Fairchild Semiconductor's advanced Power Trench process to

optimize the $r_{DS(ON)}$ @ V_{GS} = 1.5 V on special MicroFET

General Description

leadframe.

Applications

Li-lon Battery Pack

MicroFET 2X2 (Bottom View)

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			20	V	
V _{GS}	Gate to Source Voltage			±8	V	
I _D	-Continuous	T _A = 25 °C	(Note 1a)	9.5	•	
	-Pulsed		24	— A		
D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.4	14/	
PD	Power Dissipation	T _A = 25 °C	(Note 1b)	0.9	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

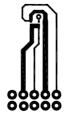
Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	52	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	145	C/VV

Package Marking and Ordering Information

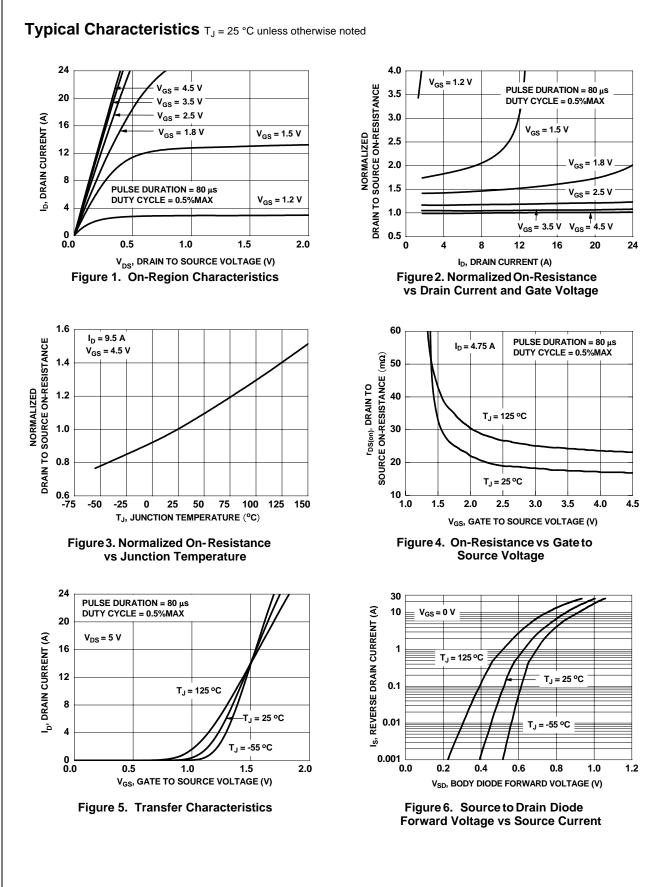
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
410	FDMA410NZ	MicroFET 2X2	7 "	12 mm	3000 units

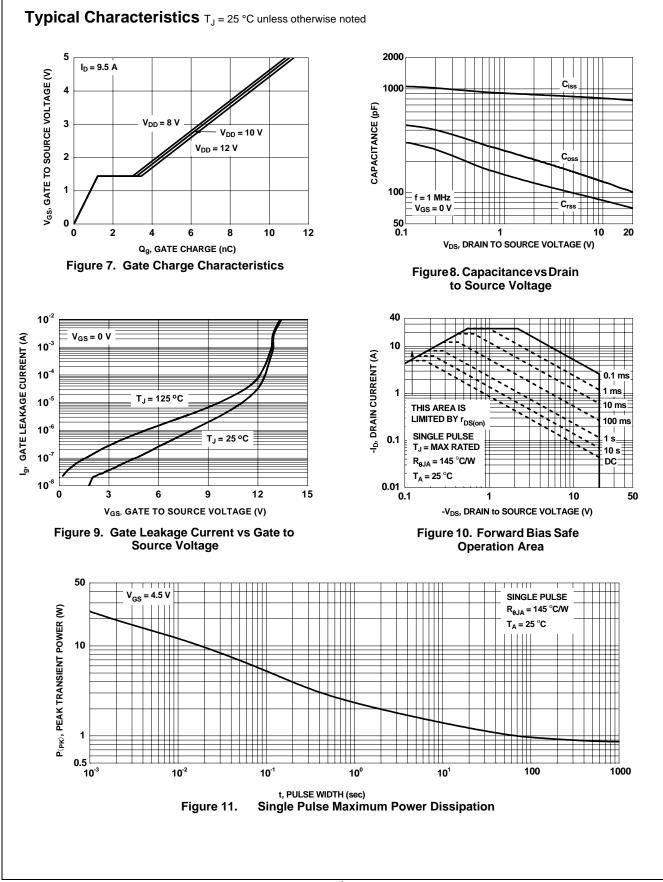
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	20			V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		17		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16 V, V _{GS} = 0 V			1	μΑ	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μΑ	
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	0.4	0.7	1.0	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-3		mV/°C	
0		V _{GS} = 4.5 V, I _D = 9.5 A		17	23		
		$V_{GS} = 2.5 \text{ V}, I_D = 8.0 \text{ A}$		20	29	mΩ	
-	Static Drain to Source On Resistance	$V_{GS} = 1.8 \text{ V}, I_D = 4.0 \text{ A}$		24	36		
r _{DS(on)}		V _{GS} = 1.5 V, I _D = 2.0 A		29	50	1115.2	
		V _{GS} = 4.5 V, I _D = 9.5 A, T _J = 125 °C		23	32		
9 _{FS}	Forward Transconductance	V _{DD} = 5 V, I _D = 9.5 A		35		S	
Dynamic	Characteristics						
C _{iss}	Input Capacitance			815	1080	pF	
C _{oss}	Output Capacitance	──V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz		130	175	pF	
C _{rss}	Reverse Transfer Capacitance			85	130	pF	
R _g	Gate Resistance	f = 1 MHz		2.1		Ω	
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time			7.5	15	ns	
t _r	Rise Time	V _{DD} = 10 V, I _D = 9.5 A,		3.9	10	ns	
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		27	44	ns	
t _f	Fall Time			3.7	10	ns	
Q _q	Total Gate Charge			10	14	nC	
Q _{gs}	Gate to Source Charge	$V_{GS} = 4.5 \text{ V}$, $V_{DD} = 10 \text{ V}$,		1.2		nC	
Q _{gd}	Gate to Drain "Miller" Charge	I _D = 9.5 A		2.0		nC	
*	urce Diode Characteristics						
I _S	Maximum Continuous Drain-Source Diode	Forward Current			2.0	Α	
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = 2.0 \text{ A}$ (Note 2)		0.7	1.2	V	
- 30				••••		-	


I _S	Maximum Continuous Drain-Source Diode Forward Current				2.0	A
V _{SD}	Source to Drain Diode Forward Voltage $V_{GS} = 0 V$, $I_S = 2.0 A$ (Note 2)			0.7	1.2	V
t _{rr}	Reverse Recovery Time	1 - 0.5 A di/dt - 100 A/wa		12	22	ns
Q _{rr}	Reverse Recovery Charge	I _F = 9.5 A, di/dt = 100 A/μs		2.6	10	nC

NOTES:

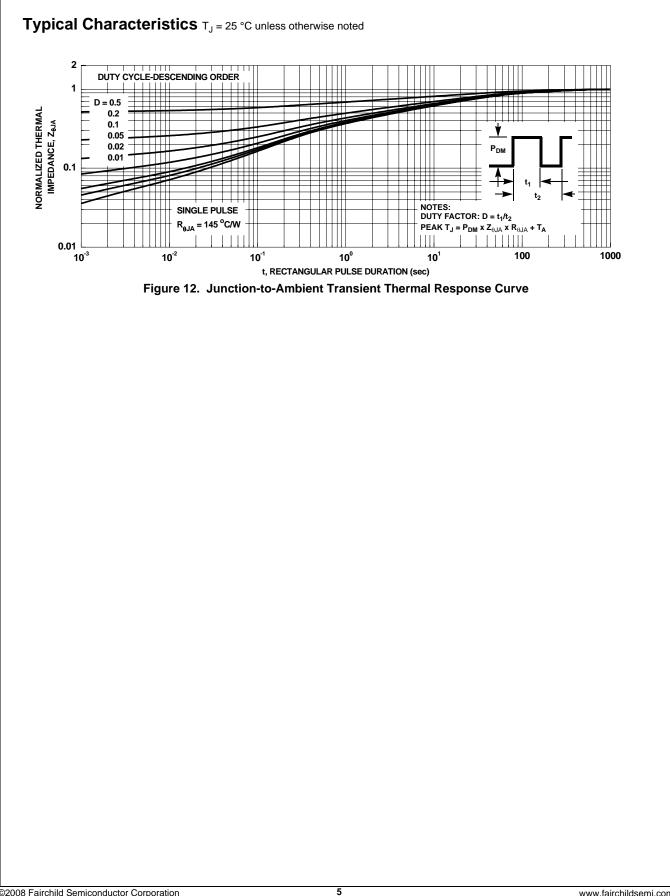
R_{θJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{θJC} is guaranteed by design while R_{θJA} is determined by the user's board design.

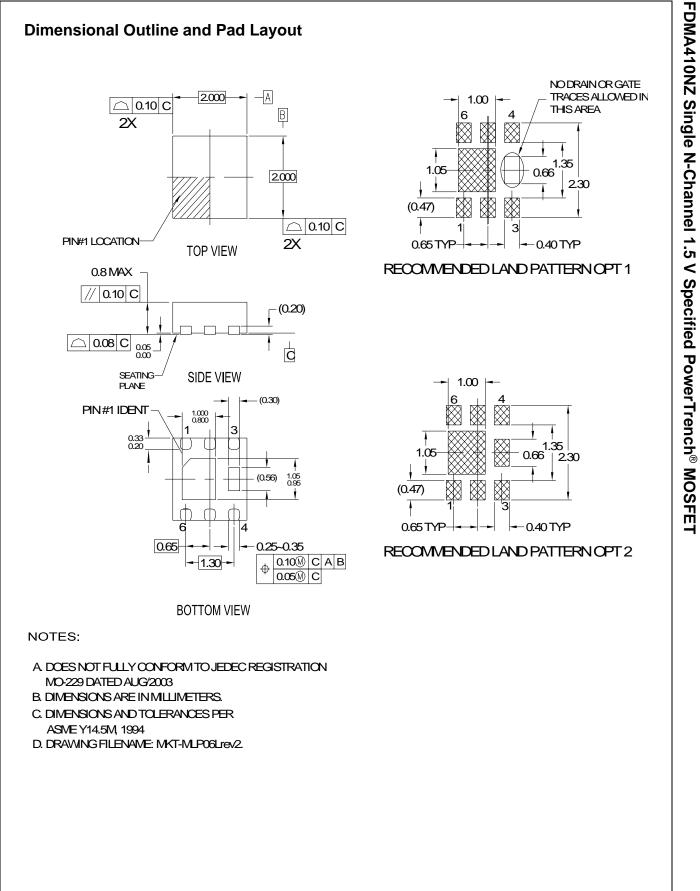

a.52 °C/W when mounted on a 1 in² pad of 2 oz copper.

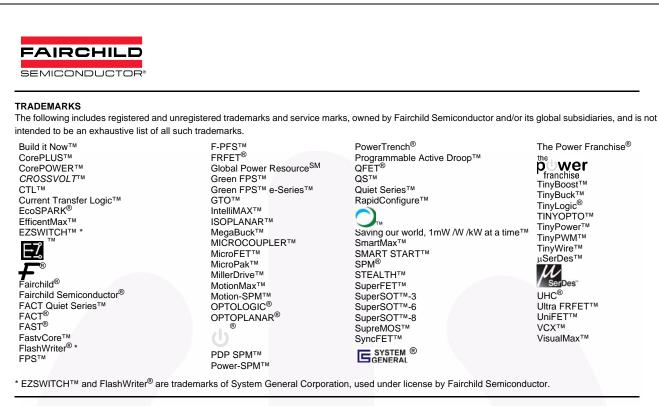

b. 145 °C/W when mounted on a minimum pad of 2 oz copper.

Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

FDMA410NZ Single N-Channel 1.5 V Specified PowerTrench® MOSFET


©2008 Fairchild Semiconductor Corporation FDMA410NZ Rev.B


www.fairchildsemi.com


FDMA410NZ Single N-Channel 1.5 V Specified PowerTrench® MOSFET

©2008 Fairchild Semiconductor Corporation FDMA410NZ Rev.B

FDMA410NZ Single N-Channel 1.5 V Specified PowerTrench® MOSFET

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Earichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand product information. Fairchild and our Authorized Distributors will stand perform Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 13