
BC177 BC177B

LOW NOISE GENERAL PURPOSE AUDIO AMPLIFIERS

DESCRIPTION

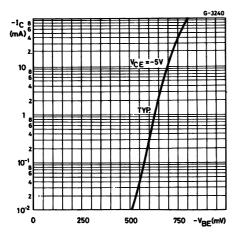
The BC177 and BC177B are silicon Planar Epitaxial PNP transistors in TO-18 metal case. They are suitable for use in driver stages, low noise input stages and signal processing circuits of television reveivers. The NPN complementary types are BC107 and BC107B respectively.

ABSOLUTE MAXIMUM RATINGS

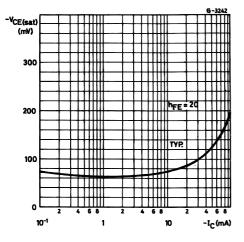
Symbol	Parameter	Value	Unit
VCES	Collector-Emitter Voltage ($V_{BE} = 0$)	-50	V
Vceo	Collector-Emitter Voltage $(I_B = 0)$	-45	V
V _{EBO}	Emitter-Base Voltage $(I_{C} = 0)$	-5	V
lc	Collector Current	-100	mA
Ісм	Collector Peak Current	-200	mA
Ptot	Total Dissipation at $T_{amb} \le 25 \ ^{\circ}C$	0.3	W
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

December 2002

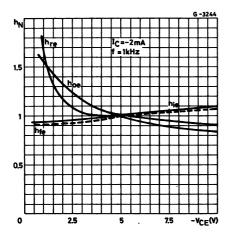
THERMAL DATA

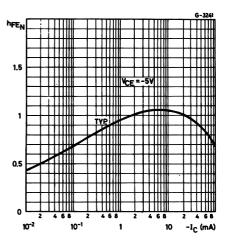

R _{thj-case}	Thermal Resistance Junction-Case	Max	200	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	500	°C/W

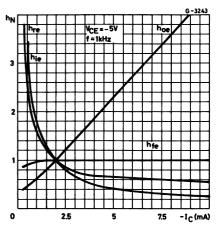
ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified)

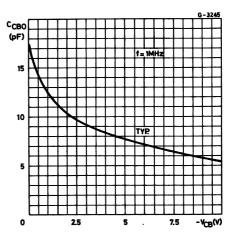

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	$V_{CE} = -20 V$ $V_{CE} = -20 V$ $T_{C} = 150 \ ^{\circ}C$		-1	-100 -10	nΑ μΑ
$V_{(BR)CES}$	Collector-Emitter Breakdown Voltage (V _{BE} = 0)	I _C = -10 μA	-50			V
$V_{(BR)CEO^*}$	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = -2 mA	-45			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = -10 μA	-5			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$ I_C = -10 \text{ mA} \qquad I_B = -0.5 \text{ mA} \\ I_C = -100 \text{ mA} \qquad I_B = -5 \text{ mA} $		-75 -200	-250	mV mV
V _{BE(sat)} *	Base-Emitter Saturation Voltage			-720 -860		mV mV
$V_{BE(on)}*$	Base-Emitter On Voltage	$I_{\rm C}$ = -2 mA $V_{\rm CE}$ = -5 V	-550	-640	-750	mV
h _{fe} *	Small Signal Current Gain	Ic = -2 mA V _{CE} = -5 V f = 1KHz for BC177 for BC177B	125 240		500 500	
f⊤	Transition Frequency	I_C = -10 mA V_{CE} = -5 V f = 100 MHz		200		MHz
Ссво	Collector-Base Capacitance	$I_E = 0$ $V_{CB} = -10$ V $f = 100$ KHz		5		pF
NF	Noise Figure	$ I_C = -0.2 \text{ mA} V_{CE} = -5 \text{ V} $ $ f = 1 \text{KHz} R_g = 2 \text{K} \Omega \text{B} = 200 \text{Hz} $		2	10	dB
h _{ie}	Input Impedance	$I_{C} = -2 \text{ mA}$ $V_{CE} = -5 \text{ V}$ $f = 1 \text{KHz}$		5		KΩ
h _{re}	Reverse Voltage Ratio	$I_{C} = -2 \text{ mA}$ $V_{CE} = -5 \text{ V}$ $f = 1 \text{KHz}$		4		10 ⁻⁴
h _{oe}	Output Admittance	$I_C = -2 \text{ mA} \qquad V_{CE} = -5 \text{ V} f = 1 \text{KHz}$		30		μS

* Pulsed: Pulse duration = 300 $\mu s,$ duty cycle \leq 1 %

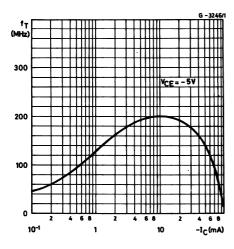

DC Transconductance.


Collector-emitter Saturation Voltage.

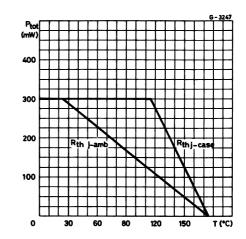

Normalized h Parameters.


DC Normalized Current Gain.

Normalized h Parameters.

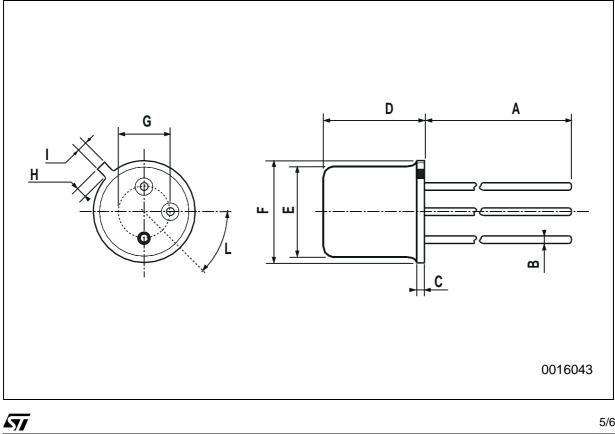


Collector-base Capacitance.



57

Transition Frequency.


Power Rating Chart.

57

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		12.7			0.500	
В			0.49			0.019
D			5.3			0.208
E			4.9			0.193
F			5.8			0.228
G	2.54			0.100		
Н			1.2			0.047
I			1.16			0.045
L	45 [°]			45 [°]		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

6/6

