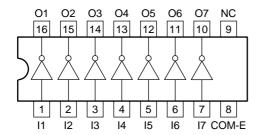
Toshiba Bipolar Digital Integrated Circuit Silicon Monolithic

# TD62502FNG,TD62503FNG,TD62504FNG

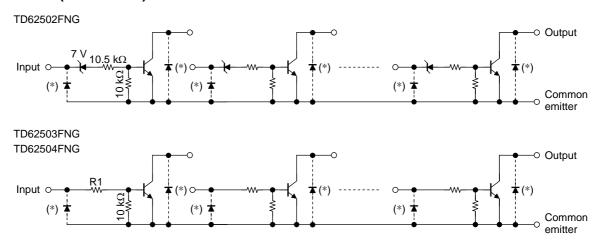
7ch Single Driver: Common Emitter

#### TD62502, 503, 504FN: Common Emitter

The TD62502FNG, TD62503FNG and TD62504FNG are comprised of seven or five NPN Transistor Arrays. Applications include relay, hammer, Lamp and display (LED) drivers.


#### **Features**

- · Output current (single output) 200 mA max
- · High sustaining voltage output 35 V min
- Inputs compatible with various types of logic.
- TD62502FNG: RIN = 10.5 k $\Omega$  + 7 V Zener diode... 14 V to 25 V P-MOS
- TD62503FNG: RIN = 2.7 k $\Omega$ ··· TTL, 5 V C-MOS
- TD62504FNG: RIN = 10.5 k $\Omega$ ··· 6 V to 15 V P-MOS, C-MOS
- Package type: SSOP-16 pin (0.65 mm pitch)


# SSOP16-P-225-0.65B

Weight: 0.07 g (typ.)

#### Pin Connection (top view)



#### Schematics (each driver)



TD62503FNG R1 =  $2.7 \text{ k}\Omega$ 

 $TD62504FNG \quad R1 = 10.5 \; k\Omega$ 

<sup>\*:</sup> The input and output parasitic diodes cannot be used us clamp diodes.



# Maximum Ratings (Ta = 25°C unless otherwise noted)

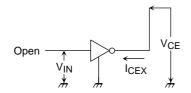
| Characteristics           | Symbol                  | Rating     | Unit  |
|---------------------------|-------------------------|------------|-------|
| Collector-emitter voltage | V <sub>CEO</sub>        | 35         | ٧     |
| Collector-base voltage    | V <sub>CBO</sub>        | 50         | V     |
| Collector current         | IC                      | 200        | mA/ch |
| Input voltage             | V <sub>IN</sub>         | -0.5 to 30 | V     |
| Power dissipation         | P <sub>D</sub> (Note 1) | 0.78       | W     |
| Operating temperature     | T <sub>opr</sub>        | -40 to 85  | °C    |
| Storage temperature       | T <sub>stg</sub>        | -55 to 150 | °C    |

Note 1: On glass epoxy PCB ( $50 \times 50 \times 1.6$  mm, Cu 40%)

# Recommended Operating Conditions ( $Ta = -40 \text{ to } 85^{\circ}\text{C}$ )

| Characteristics           | Symbol                  | Test Condition | Min | Тур. | Max   | Unit  |
|---------------------------|-------------------------|----------------|-----|------|-------|-------|
| Collector-emitter voltage | V <sub>CEO</sub>        |                | 0   | _    | 35    | V     |
| Collector-base voltage    | V <sub>CBO</sub>        |                | 0   | _    | 50    | V     |
| Collector current         | Ic                      |                | 0   | _    | 150   | mA/ch |
| Input voltage             | V <sub>IN</sub>         |                | 0   | _    | 25    | V     |
| Power dissipation         | P <sub>D</sub> (Note 1) | On PCB         | _   | _    | 0.325 | W     |

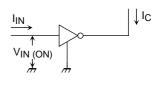
Note 1: On glass epoxy PCB ( $50 \times 50 \times 1.6$  mm, Cu 40%)


# **Electrical Characteristics (Ta = 25°C unless otherwise noted)**

| Char                                 | acteristics | Symbol                | Test<br>Circuit | Test Condition                                                      | Min  | Тур. | Max | Unit |
|--------------------------------------|-------------|-----------------------|-----------------|---------------------------------------------------------------------|------|------|-----|------|
| Output leakage of                    | current     | I <sub>CEX</sub>      | 1               | $V_{CE} = 35V$ , $V_{IN} = 0$ V                                     | _    | _    | 10  | μΑ   |
| Collector-emitter saturation voltage |             | VCE (sat)             | 2               | I <sub>IN</sub> = 1 mA, I <sub>C</sub> = 10 mA                      | _    | _    | 0.2 | V    |
|                                      |             |                       |                 | $I_{IN} = 3 \text{ mA}, I_C = 150 \text{ mA}$ (Note 1)              | _    | _    | 0.8 |      |
| DC current trans                     | fer ration  | h <sub>FE</sub>       | 2               | V <sub>CE</sub> = 10 V, I <sub>C</sub> = 10 mA                      | 50   | _    | _   |      |
| Input voltage<br>(Output on)         | TD62502FNG  | V <sub>IN</sub> (ON)  |                 | I <sub>IN</sub> = 1 mA, I <sub>C</sub> = 10 mA                      | 14.0 | _    | 25  | V    |
|                                      | TD62503FNG  |                       | 3               |                                                                     | 2.4  | _    | 25  |      |
|                                      | TD62504FNG  |                       |                 |                                                                     | 7.0  | _    | 25  |      |
| Input voltage<br>(Output off)        | TD62502FNG  |                       |                 | 3 I <sub>C</sub> ≤ 10 μA                                            | 0    | _    | 7.0 | V    |
|                                      | TD62503FNG  | V <sub>IN</sub> (OFF) | 3               |                                                                     | 0    | _    | 0.4 |      |
|                                      | TD62504FNG  |                       |                 |                                                                     | 0    | _    | 0.8 |      |
| Turn-on delay                        |             | t <sub>ON</sub>       | 4               | $V_{OUT} = 35 \text{ V}, R_L = 220 \Omega$<br>$C_L = 15 \text{ pF}$ | _    | 50   | _   | - ns |
| Turn-off delay                       |             | tOFF                  |                 |                                                                     | _    | 200  | _   |      |

Note 1: Except TD62502FNG

#### **Test Circuit**


#### 1. ICEX

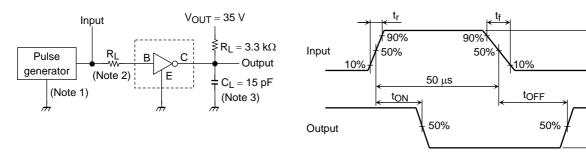


# 2. hFE, VCE (sat)

$$\begin{array}{c}
 & \downarrow \\
 & \downarrow \\$$

#### 3. V<sub>IN</sub> (ON)




 $V_{\text{IH}}$ 

0

 $V_{OH}$ 

Vol

#### 4. ton, toff



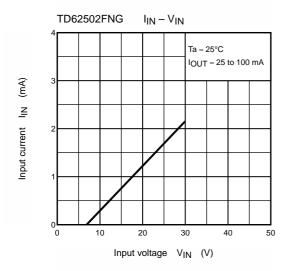
Note 1: Pulse width 50 µs, duty cycle 10%

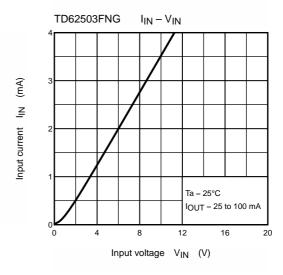
Output impedance 50  $\Omega$ , tr  $\leq$  5 ns, tf  $\leq$  10 ns

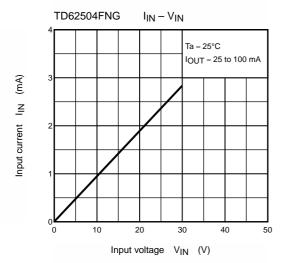
Note 2: See below

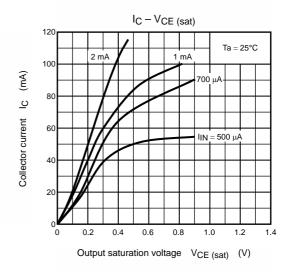
### **Input Condition**

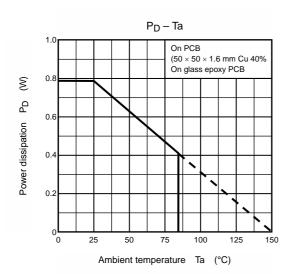
| Type Number | RĮ  | VIН  |
|-------------|-----|------|
| TD62502FN   | 0 Ω | 15 V |
| TD62503FN   | 0 Ω | 3 V  |
| TD62504FN   | 0 Ω | 10 V |


Note 3: CL includes probe and jig capacitance

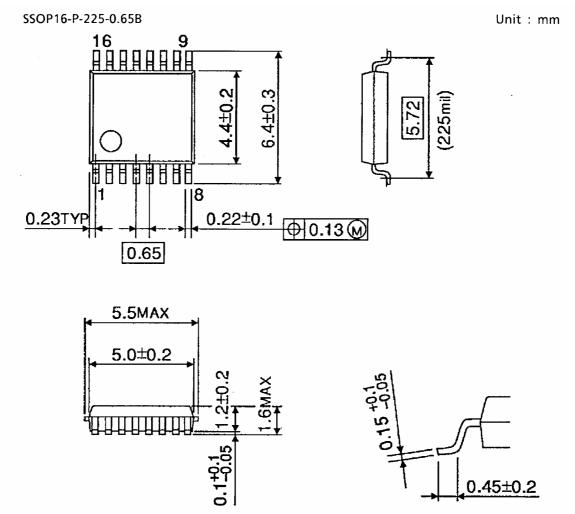

#### **Precautions for Using**


This IC does not integrate protection circuits such as overcurrent and overvoltage protectors.


Thus, if excess current or voltage is applied to the IC, the IC may be damaged. Please design the IC so that excess current or voltage will not be applied to the IC.


Utmost care is necessary in the design of the output line, VCC and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.












# **Package Dimensions**



Weight: 0.07 g (typ.)

About solderability, following conditions were confirmed

- Solderability
  - (1) Use of Sn-63Pb solder Bath
    - solder bath temperature = 230°C
    - · dipping time = 5 seconds
    - · the number of times = once
    - · use of R-type flux
  - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
    - · solder bath temperature = 245°C
    - · dipping time = 5 seconds
    - · the number of times = once
    - · use of R-type flux

Handbook" etc..

#### **RESTRICTIONS ON PRODUCT USE**

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
  responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
  may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
  TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
  In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.