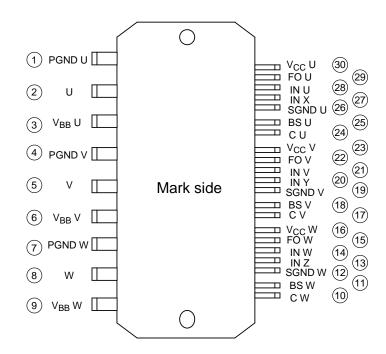
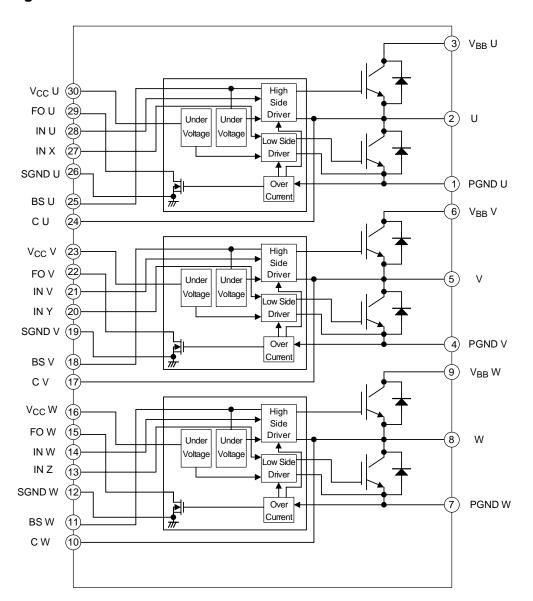

TOSHIBA Intelligent IGBT Module

MIG10J504H


Features

- The 4th generation trench gate thin wafer NPT IGBT is adopted.
- FRD is built in.
- I/O input: logic level (3.3 V / 5 V)
- The level shift circuit by high-voltage IC is built in.
- The simplification of a high side driver power supply is possible by the bootstrap system.
- Short circuit protection for a lower arm IGBT and the power supply under voltage protection function are built in.
- Short circuit protection state for a lower arm IGBT is outputted.
- The lower arm emitter terminal has been independent by each phase for the purpose of the current detection at the time of vector control.
- Low thermal resistance by adoption of original high thermal conduction resin.


Since this product is MOS structure, it should be careful of static electricity in the case of handling.

Pin Assignment

Block Diagram

Pin Description

Pin No.	Symbol	Pin Description
1	PGND U	U-Phase Power Ground pin (connect a current detecting resistor between this pin and SGND U pin)
2	U	U-Phase output pin
3	V _{BB} U	U-Phase high-voltage power supply pin
4	PGND V	V-Phase Power Ground pin (connect a current detecting resistor between this pin and SGND V pin)
5	V	V-Phase output pin
6	V _{BB} V	V-Phase high-voltage power supply pin
7	PGND W	W-Phase Power Ground pin (connect a current detecting resistor between this pin and SGND W pin)
8	W	W-Phase output pin
9	V _{BB} W	W-Phase high-voltage power supply pin
10	CW	W-Phase bootstrap capacitor connecting pin (-)
11	BS W	W-Phase bootstrap capacitor connecting pin (+)
12	SGND W	W-Phase Signal Ground pin
13	IN Z	W-Phase low-side input pin (negative logic)
14	IN W	W-Phase high-side input pin (negative logic)
15	FO W	W-Phase Diagnosis output pin (open drain output. Wired or connection can be performed with the diagnosis output pin of other phase.)
16	V _{CC} W	W-Phase control power supply (+15 V typ.)
17	CV	V-Phase bootstrap capacitor connecting pin (-)
18	BS V	V-Phase bootstrap capacitor connecting pin (+)
19	SGND V	V-Phase Signal Ground pin
20	IN Y	V-Phase low-side input pin (negative logic)
21	IN V	V-Phase high-side input pin (negative logic)
22	FO V	V-Phase Diagnosis output pin (open drain output. Wired or connection can be performed with the diagnosis output pin of other phase.)
23	V _{CC} V	V-Phase control power supply (+15 V typ.)
24	CU	U-Phase bootstrap capacitor connecting pin (-)
25	BS U	U-Phase bootstrap capacitor connecting pin (+)
26	SGND U	U-Phase Signal Ground pin
27	IN X	U-Phase low-side input pin (negative logic)
28	IN U	U-Phase high-side input pin (negative logic)
29	FO U	U-Phase Diagnosis output pin (open drain output. Wired or connection can be performed with the diagnosis output pin of other phase.)
30	V _{CC} U	U-Phase control power supply (+15 V typ.)

Absolute Maximum Ratings (T_j = 25°C)

Stage	Characteristics		Condition	Symbol	Rating	Unit	
	Davier aumphonelle re		V DCND Towning	V _{BB}	450	V	
	Power supply voltage		V _{BB} -PGND Terminal	V _{BB} (surge)	500	V	
	Collector-emitter voltage			V _{CES}	600	V	
	Collector current	DC	Tc = 25°C	Ic	10	^	
	Collector current	1 ms	Tc = 25°C	I _{CP}	20	Α	
Inverter	Forward current	DC	Tc = 25°C	I _F	10	Δ.	
	Forward current	1 ms	Tc = 25°C	I _{FM}	20	Α	
	Collector power dissipation (per 1 IGBT chip)		Tc = 25°C	PC	43	W	
	Collector power dissipation (per 1 FRD chip)	ı	Tc = 25°C	PC	25	W	
	Output voltage rate of char	nge		dv/dt	20	kV/μs	
	Control ounnly voltage		BS-C Terminal	V _{BS}	20	V	
	Control supply voltage		V _{CC} -GND Terminal	Vcc	20	V	
Control	Input voltage		IN-GND Terminal	V _{IN}	-0.5 to 5.5	V	
Control	Fault output supply voltage	1	FO-GND Terminal	V _{FO}	20	V	
	Fault output current		FO sink current	I _{FO}	15	mA	
	PGND-SGND voltage diffe	rence	PGND-SGND Terminal	V _{PGND-SGND}	−5 to 5	V	
	Operating temperature			T _{OPE}	-20 to 100	°C	
	Junction temperature	(Note 1)		Tj	150	°C	
Module	Storage temperature			T _{stg}	-40 to 125	°C	
	Isolation voltage		60 Hz sinusoidal, AC 1 min	V _{ISO}	2500	Vrms	
	Screw torque		M3	_	0.5	N∙m	

Note 1: Although a junction temperature is 150°C the own maximum moment of a power chips which it builds in this module, the average operation junction temperature for carrying out safe operation specifies it as 125°C or less.

Electrical Characteristics ($T_j = 25$ °C)

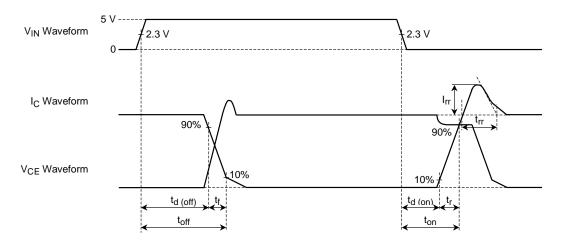
1. Inverter Stage

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Collector cut-off current		I _{CEX}	$V_{CE} = 600 \text{ V}, V_{CC} = 15 \text{ V}, V_{BS} = 15 \text{ V}, V_{IN} = 5 \text{ V}$	_	_	1	mA
Collector-emitter saturation voltage		V _{CE} (sat)	$V_{CC} = 15 \text{ V}, V_{BS} = 15 \text{ V}, I_{C} = 10 \text{ A}, V_{IN} = 0 \text{ V}$	_	1.7	2.2	V
Forward voltage		V _F	I _F = 10 A	_	1.4	1.9	V
	Turn-on time	t _{on}		_	400	700	
	Rise time	t _r		_	40	80	
	Turn-on delay time	t _{d (on)}	V _{BB} = 300 V, V _{CC} = 15 V,	_	360	_	
Switching time	Turn-off time	t _{off}	$V_{BS} = 15 V,$	_	500	800	ns
	Fall time	t _f	I _C = 10 A, inductive load (Note 2)	_	70	300	
	Turn-off delay time	t _{d (off)}		_	430	_	
	Recerse recovery time	trr		_	75	_	

2. Control Stage

Characteristics		Symbol	Test Cond	Test Condition		Тур.	Max	Unit	
		l- a	V _{CC} = 15 V, V _{BS} = 15 V	$V_{IN} = 5 V$	_	360	600	^	
Current dissipation for 1 a	arm	I _{BS}	$V_{BS} = 15 \text{ V}$	VIN = 0 V	_	470	1000	μА	
Current dissipation for Ta		Icc	V _{CC} = 15 V, V _{BS} = 15 V	V _{IN} = 5 V	_	0.9	1.5	mΛ	
		icc	$V_{BS} = 15 \text{ V}$	VIN = 0 V	_	1.0	1.6	mA	
Input voltage		V _{IN} (on/off)	V _{CC} = 15 V	1.5	2.3	2.7	V		
Input current		I _{IH}	$V_{CC} = 15 \text{ V}, V_{IN} = 5 \text{ V}$	-30	-5	0	μА		
		I _I Γ	$V_{CC} = 15 \text{ V}, V_{IN} = 0 \text{ V}$	-60	-30	0			
Fault output voltage		V_{FO}	$I_{FO} = 5 \text{ mA}$		_	0.8	1.2	V	
Short current protection v	oltage	V _{sense}	$V_{CC} = 15 \text{ V}$ (Note 3)		1.16	1.28	1.41	V	
Short current protection d	elay time	t _{sc}	V _{CC} = 15 V		1.0	1.5	2.0	μS	
Fault output pulse width		t _{Fo}	V _{CC} = 15 V		1	2	3	ms	
Under voltage protection	Trip level	V _{BS} UVD			10.0	11.0	12.0	0 _V	
for high side arm	Reset level	V _{BS} UVR	_	10.5	11.5	12.5	, v		
Under voltage protection for low side arm	Trip level	V _{CC} UVD			10.5	11.5	12.5	V	
	Reset level	V _{CC} UVR			11.0	12.0	13.0	V	

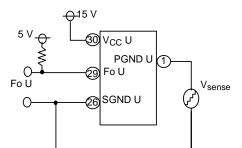
3. Thermal Resistance (Tc = 25°C)

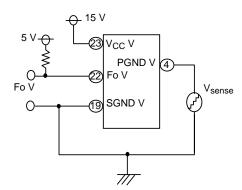

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Thermal resistance	R _{th (j-c)}	Transistor stage	_	_	2.9	°C/W
Thermal resistance		Diode stage	_	_	5.0	O/VV

5

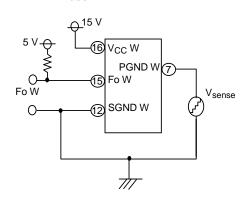
4. Recommended conditions for application

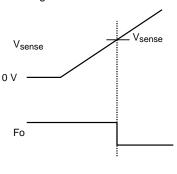
Characteristics	Symbol Test Condition		Min	Тур.	Max	Unit	
Operating power supply voltage	V_{BB}	_	50	300	400	V	
Control supply voltage	V _{BS}	_	13.5	15	16.5	V	
Control supply voltage	V _{CC}	_	13.5	15	16.5	v	
Switching frequency	fc	_	_	15	_	kHz	
Dead time	^t dead	$V_{BB} = 300 \text{ V}, V_{CC} = 15 \text{ V}, V_{BS} = 15 \text{ V},$ $I_{C} = 10 \text{ A}, \text{ inductive load}$	1	_	_	μS	
Minimum Input pulse width	twin (min)	V _{CC} = 15 V, V _{BS} = 15 V	_	1	_	μS	


Note 2: Switching waveform



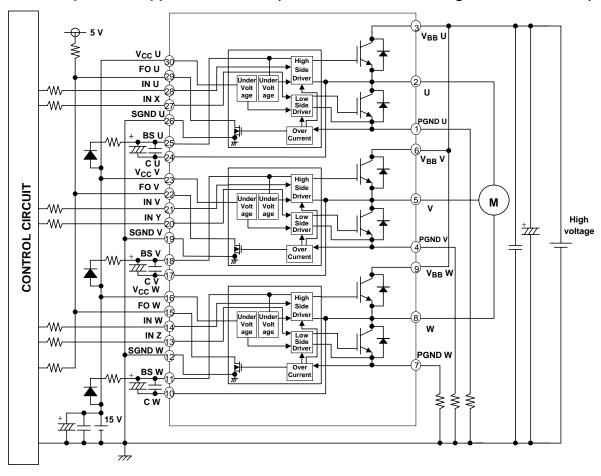
Note 3: V_{sense} measurement circuit


U-Phase



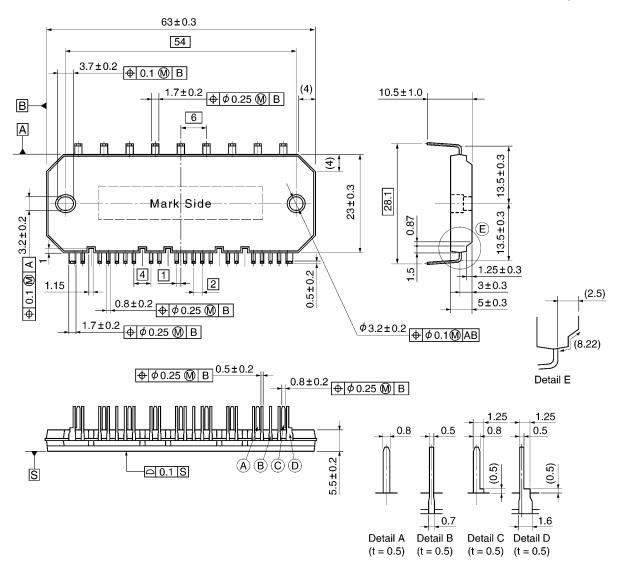
W-Phase

Timing Chart


 $V_{\mbox{sense}}$ is measured by giving the sweep voltage from the outside like the above-mentioned.

When the overcurrent detection value is set by an actual application, it is necessary to consider the resistance of the internal bonding wire.

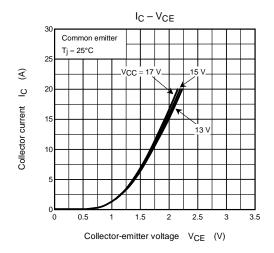
7

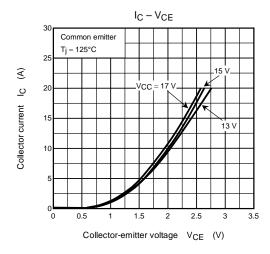

The resistance of the internal bonding wire is 11 m Ω .

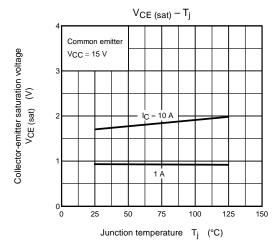
The Example of an Application Circuit (in the case of not insulating with a control side)

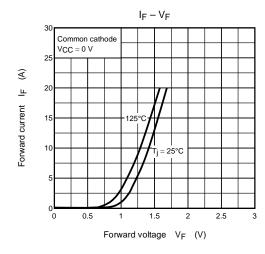
Package Dimensions: TOSHIBA 2-63A1A

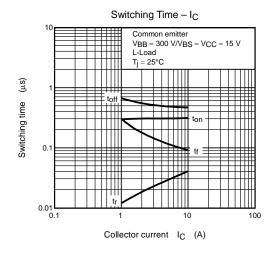
Unit: mm

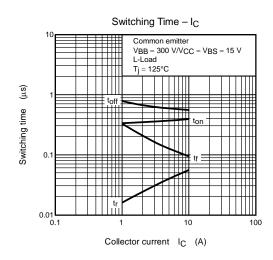

Weight: 18 g (typ.)

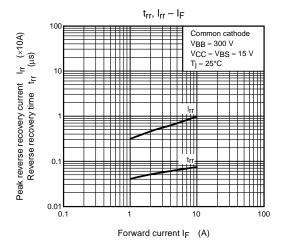

1.	PGND U	2.	U	3.	$V_{BB}U$	4.	PGND V	5.	V	6.	$V_{BB}V$
7.	PGND W	8.	W	9.	$V_{BB}W$	10.	CW	11.	BS W	12.	SGND W
13.	IN Z	14.	IN W	15.	FO W	16.	$V_{CC} W$	17.	CW	18.	BS V
19.	SGND V	20.	IN Y	21.	IN V	22.	FO V	23.	$V_{CC} V$	24.	CU
25.	BS U	26.	SGND U	27.	IN X	28.	IN U	29.	FO U	30.	V _{CC} U

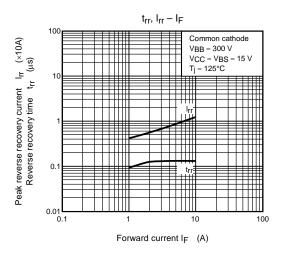

Truth Table

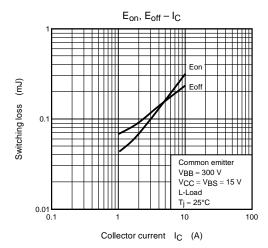

Protection	on Circuit Detect	ion State	Inj	out	IGBT	State	Fault Output
High Side Under Voltage	Low Side Under Voltage	Short Circuit	IN (X) High Side Arm	IN (X) Low Side Arm	High Side Arm	Low Side Arm	FO (X)
Un-Detecting	Un-Detecting	Un-Detecting	Н	Н	OFF	OFF	OFF
Un-Detecting	Un-Detecting	Un-Detecting	Н	L	OFF	ON	OFF
Un-Detecting	Un-Detecting	Un-Detecting	L	Н	ON	OFF	OFF
Un-Detecting	Un-Detecting	Un-Detecting	L	L	OFF	OFF	OFF
Detecting	Un-Detecting	Un-Detecting	Н	Н	OFF	OFF	OFF
Detecting	Un-Detecting	Un-Detecting	Н	L	OFF	ON	OFF
Detecting	Un-Detecting	Un-Detecting	L	Н	OFF	OFF	OFF
Detecting	Un-Detecting	Un-Detecting	L	L	OFF	OFF	OFF
Un-Detecting	Detecting	Un-Detecting	Н	Н	OFF	OFF	OFF
Un-Detecting	Detecting	Un-Detecting	Н	L	OFF	OFF	OFF
Un-Detecting	Detecting	Un-Detecting	L	Н	OFF	OFF	OFF
Un-Detecting	Detecting	Un-Detecting	L	L	OFF	OFF	OFF
Detecting	Detecting	Un-Detecting	Н	Н	OFF	OFF	OFF
Detecting	Detecting	Un-Detecting	Н	L	OFF	OFF	OFF
Detecting	Detecting	Un-Detecting	L	Н	OFF	OFF	OFF
Detecting	Detecting	Un-Detecting	L	L	OFF	OFF	OFF
Un-Detecting	Un-Detecting	Detecting	Н	Н	OFF	OFF	ON
Un-Detecting	Un-Detecting	Detecting	Н	L	OFF	OFF	ON
Un-Detecting	Un-Detecting	Detecting	L	Н	OFF	OFF	ON
Un-Detecting	Un-Detecting	Detecting	L	L	OFF	OFF	ON

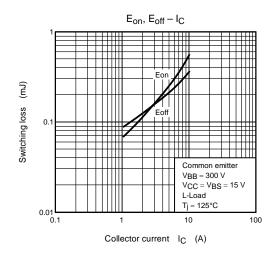

- The above has indicated a part for single arm.
- There is no relevance of operation between arms.
- When the input of a high side arm and a low side arm is simultaneously set to "L", IGBT of a high side arm and a low side arm turns off.
- FO (X) terminal is turned on in the meantime at the same time, as for the output of Phase which detected the load short circuit state, it will maintain the OFF between 2 ms, if a Short Current Protection detects a Short Current state for a lower arm IGBT. Although an incoming signal is reset by an upper arm and a lower arm being simultaneously set to "H" in the back in this state, OFF of an output and FO (X) are maintained between 2 ms. Although FO (X) is turned off when FO (X) terminal for 2 ms will not be in the simultaneous "H" state of an upper arm and a lower arm in during ON time, an output maintains OFF. This release is made by an upper arm and a lower arm being simultaneously set to "H".
 - (Short current protection is a non-repetition. When FO (X) turns on, please turn off the input of all phase.)
- Over Temperature Protection circuit is not built in.

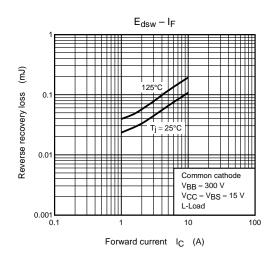


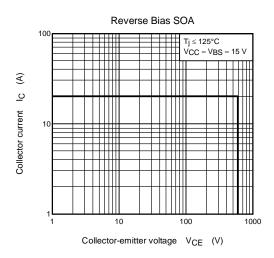


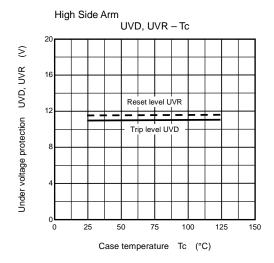


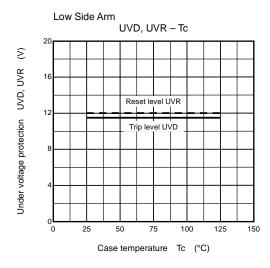


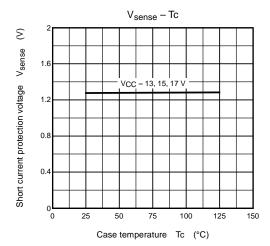


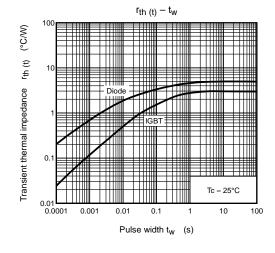


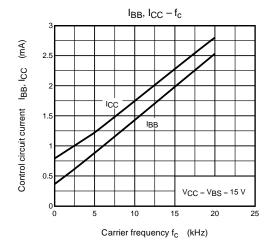


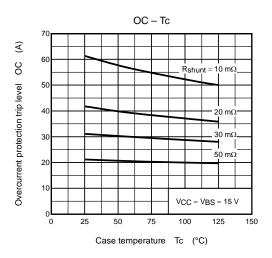












RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.