
V17

FEATURES

- Transient surge voltage protection.
- Diffused-junction. Glass passivated and encapsulated.

OUTLINE DRAWING

ABSOLUTE MAXIMUM RATINGS

Items	Ту	ре	V17A	V17B	V17C	V17D	V17E						
Repetitive Peak Reverse Voltage	V_{RRM}	V	50	100	200	300	400						
Peak Reverse Power	P _{RM}	kW	1.5(Tj = 25°C,Impulse duration 10μs Non-repetitive)										
Average Forward Current	I _{F(AV)}	А	1.3 (Sing	1.3 (Single-phase half sine wave 180° conduction $T_L=80^{\circ}$ C, Lead length = 10 mm									
Surge(Non-Repetitive) Forward Current	I _{FSM}	Α	50(Without PIV, 10ms conduction, Tj = 165°C start)										
I ² t Limit Value	l ² t	A ² s	10(Time = $2 \sim 10$ ms, I = RMS value)										
Operating Junction Temperature	Tj	°C	-40 ~ + 165										
Storage Temperature	T _{stg}	°C	-40 ~ + 165										

Notes

- (1) Lead mounting: Lead temperature 300°C max. to 3.2mm from body for 5sec. max..
- (2) Mechanical strength: Bending 90°×2 cycles or 180°×1 cycle, Tensile 2kg, Twist 90°×1 cycle.

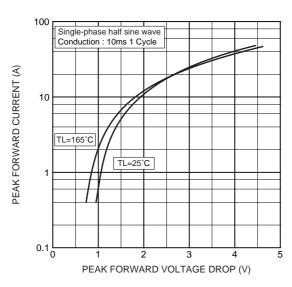
CHARACTERISTICS(T. =25°C)

Items	Symbols	mbols Units Min. Typ. Max.				Test Co	Test Conditions			
				4	50	A,B class				
Peak Reverse Current	I _{RRM}	μA	_	1.5	20	C,D class	Rated V _{RRM}			
				0.6	10	E class				
Peak Forward Voltage	V_{FM}	V	_	_	1.1	I_{FM} =1.3Ap, Single-phase half si wave 1 cycle				
Reverse Recovery Time	trr	μs	_	3.0	_	I _F =2mA, V _R =-15V				
Avalanche Voltage	V_{AVL}	V		Table.1		I _{RM} =1.0mA, Single-phase half sine wave 1 pps, Time ≤ 5s				
Avalanche Voltage Temperature Coefficient	α	%/°C	_	0.080	_	$\frac{\Delta VAVL}{VAVL} \times \frac{1}{165-25}$	×100			
Steady State Thermal Impedance	$R_{th(j-a)}$ $R_{th(j-l)}$	°C/W	_	_	80 50	Lead length = 10	mm			

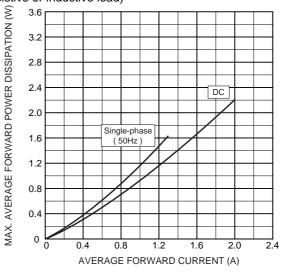
TABLE.1

			V17																			
V _{RRM} Class			Α				В			С				D				E				
V _{AVL} Symbols			17	19	21	24	27	30	33	36	33	36	39	44	44	50	55	63	55	63	70	Units
TYP. V _{AVL}		170	190	210	240	270	300	330	360	330	360	390	440	440	500	550	630	550	630	700	V	
	Α	MIN	145	160	180	205	230	255	280	305	280	305	330	375	375	425	465	535	465	535	595	V
V_{AVL}	±15%	MAX	195	220	240	275	310	345	380	415	380	415	450	505	505	575	635	725	635	725	805	
Band	В	MIN	155	175	195	220	250	280	305	330	305	330	360	405	405	460	505	580	505	580	645	
	±7.5%	MAX	180	205	225	260	290	320	355	390	355	390	420	475	475	535	590	680	590	680	750	

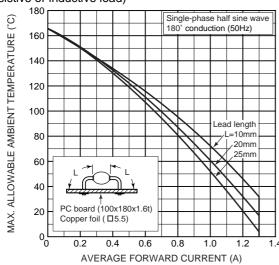
As required, the avalanche voltage can be selected as follows:

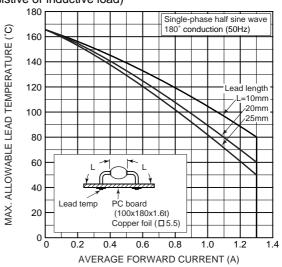

"example" V17C36A

 V_{RRM} 200V 1.3A

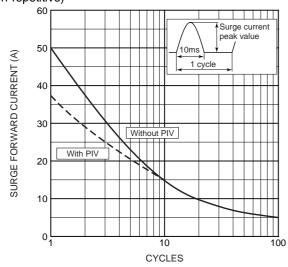

 $IF_{(AV)}$

 V_{AVL} 305~415V

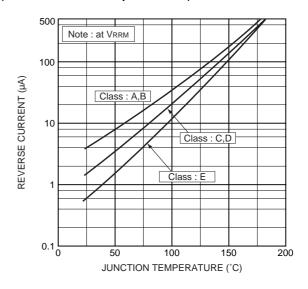

Forward characteristics


Max. average forward power dissipation (Resistive or inductive load)

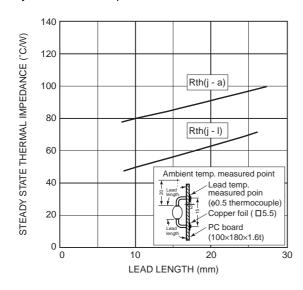
Max. allowable ambient temperature (Resistive or inductive load)

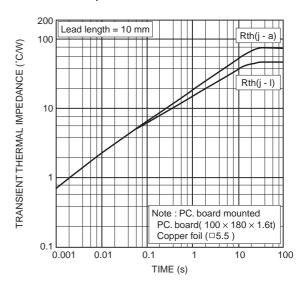


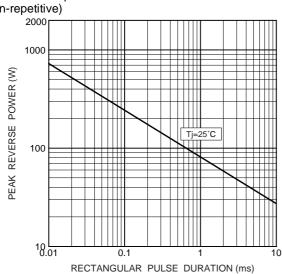
Max. allowable lead temperature (Resistive or inductive load)

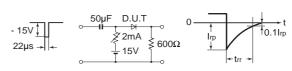


V17


Surge forward current characteristic (Non-repetitive)


Typ. Reverse current vs. junction temperature


Steady-state thermal impedance


Transient thermal impedance

Typical reverse power characteristic (Non-repetitive)

Reverse recovery time (trr) test circuit

HITACHI POWER SEMICONDUCTORS

Notices

- 1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are adviced to contact Hitachi sales department for the latest version of this data sheets.
- 2.Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use.
- 3.In cases where extremely high reliability is required(such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement. Or consult Hitachi's sales department staff.
- 4.In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user's units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets.
- 5.In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 6.No license is granted by this data sheets under any patents or other rights of any third party or Hitachi, Ltd.
- 7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi, Ltd.
- 8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety not are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.
- For inquiries relating to the products, please contact nearest overseas representatives which is located "Inquiry" portion on the top page of a home page.

Hitachi power semiconductor home page address http://www.hitachi.co.jp/pse