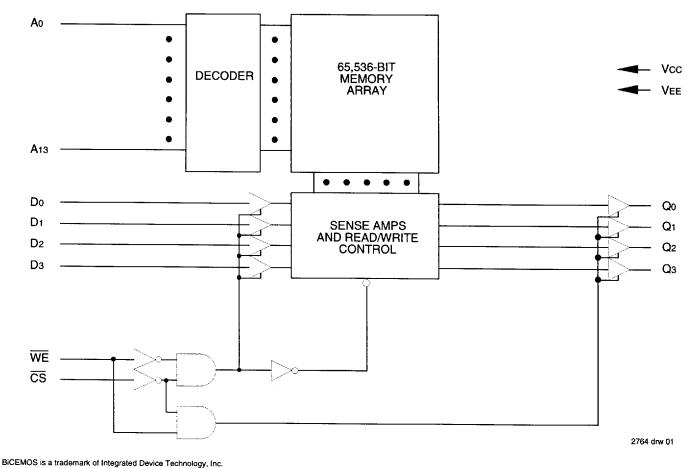


HIGH-SPEED BICMOS ECL STATIC RAM 64K (16K x 4-BIT) SRAM

IDT10494 IDT100494 IDT101494

FEATURES:

- 16,384-words x 4-bit organization
- Address access time: 4.5/5/6/7/8/10/15 ns
- Low power dissipation: 900mW (typ.)
- Guaranteed Output Hold time
- Fully compatible with ECL logic levels
- Separate data input and output
- Standard through-hole and surface mount packages
- Guaranteed-performance die available for MCMs/hybrids
- MIL-STD-883, Class B product available


DESCRIPTION:

The IDT10494, IDT100494 and IDT101494 are 65,536-bit high-speed BiCMOS ECL static random access memories organized as 16Kx4, with separate data inputs and outputs. All I/Os are fully compatible with ECL levels.

These devices are part of a family of asynchronous fourbit-wide ECL SRAMs. The devices have been configured to follow the standard ECL SRAM JEDEC pinout. Because they are manufactured in BiCEMOS[™] technology, power dissipation is greatly reduced over equivalent bipolar devices. Low power operation provides higher system reliability and makes possible the use of the plastic SOJ package for high-density surface mount assembly.

The fast access time and guaranteed Output Hold time allow greater margin for system timing variation. DataIN setup time specified with respect to the trailing edge of Write Pulse eases write timing allowing balanced Read and Write cycle times.

FUNCTIONAL BLOCK DIAGRAM

Diezwice is a trademark of integrated Device Technology, Inc.

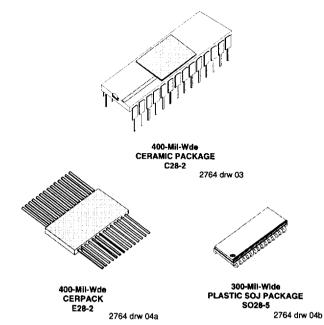
COMMERCIAL TEMPERATURE RANGE

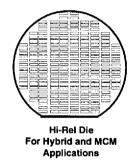
©1992 Integrated Device Technology, Inc.

1

SEPTEMBER 1992

PIN CONFIGURATION


-		
Do	1 💛	28 CS
D1 🗌	2	27 🗌 WE1
D2 🗌	3	26 🗌 NC
D3 🗌	4	25 🗌 A13
Q0 🗌	5	24 🗌 A12
Q1 🗌	6	23 🗌 A11
Vcc 🗌	7	22 🗌 A10
VCCA 🗌	8	21 🗌 VEE
Q2 🗌	9	20 🗌 A9
Q3	10	19 🗌 A8
A0 🗆	11	18 🗌 A7
A1 🗔	12	17 🗋 A6
A2 🗌	13	16 🗋 A5
Аз 🗔	14	15 🗋 A4
L	Top Vie	:
	i op vie	2764 drw 02


PIN DESCRIPTIONS

Symbol	Pin Name
Ao through A13	Address Inputs
Do through D3	Data Inputs
Q0 through Q3	Data Outputs
<u>WE1, WE</u> 2	Write Enable Inputs
<u>CS</u>	Chip Select Input (Internal pull down)
VEE	More Negative Supply Voltage
Vcc	Less Negative Supply Voltage

2764 tbl 01

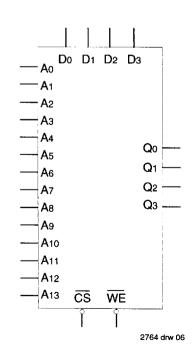
LOGIC SYMBOL

2764 drw 05

CAPACITANCE (TA = +25°C, f = 1.0MHz) DIP SOJ Symbol Parameter Typ. Max. Тур. Max. Unit CIN Input Capacitance 4 3 pF COUT Output Capacitance 6 3 рF

2764 tbl 02

2764 tbl 03


TRUTH TABLE⁽¹⁾

<u>CS</u>	<u>WE</u>	DataOUT	Function
Н	Х	L	Deselected
L	н	RAM Data	Read
L L	L	L	Write

NOTE:

2

1. H=High, L=Low, X=Don't Care

PACKAGES

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	3	Value	Unit
VTERM	Terminal Voltag With Respect to		+0.5 to -7.0	V
Та	Operating Temperature	10K 100K 101K	0 to +75 0 to +85 0 to +75	°C
TBIAS	Temperature U	nder Bias	-55 to +125	°C
Тѕтс	Storage Temperatuure	Ceramic Plastic	-65 to +150 -55 to +125	°C
Рт	Power Dissipati	on	1.5	w
Ιουτ	DC Output Curi (Output High)	rent	-50	mA

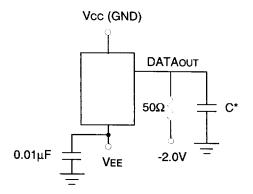
NOTE:

 NOTE: 2764 tbl 04
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS (1)

				10K		100K/10	D1K		
Symbol	Parameter		Min.	Max.	TA	Min.	Max.	Unit	
Vol Vol Volc	Output HIGH	Voltage	-1000	-840	0°C	-1025	-880	mV	
	(VIN= VIH(Max	() or VIL(Min))	-960	-810	25°C				
			-900	-720	75°C				
Vol	Output LOW	Voltage	-1870	-1665	0°C	-1810	-1620	mV	
	(VIN= VIH(Ma)	() or VIL(Min))	-1850	-1650	25°C				
			-1830	-1625	75°C				
Vонс	Output Three	shold HIGH Voltage	-1020		0°C	-1035		mV	
	(VIN= VIH(Min) or VIL(Max))	-980	_	25°C				
			-920	- 1	75°C				
Volc	Output Thres	hold LOW Voltage		-1645	0°C		-1610	mV	
	(VIN= VIH(Min) or VIL(Max))			-1630	25°C				
			—	-1605	75°C				
Viн	Input HIGH \	/oltage	-1145	-840	0°C	-1165	-880	mV	
	(Guaranteed	Input Voltage	-1105	-810	25°C				
	High for All Ir	nputs)	-1045	-720	75°C				
Vi∟	Input LOW V		-1870	-1490	0°C	-1810	-1475	mV	
		Input Voltage	-1850	-1475	25°C				
	Low for All In	puts)	-1830	-1450	75°C		-880 -1475 220 110 170		
Ін	Input HIGH Cu	irrent							
	VIN= VIH(Max)	CS		220	_	_	220	μA	
		Others	—	110			110	μΑ	
liL.	Input LOW Cu	rrent		1				· · · ·	
	VIN= VIL(Min)	<u>CS</u>	0.5	170		0.5	170	μA	
		Others	-50	90	_	-50	90	μA	
1EE	Supply Curre	ent	-190			-170 (100K)		mA	
						-190 (101K)			

NOTE:


1. RL = 50 Ω to -2V, air flow exceeding 2 m/sec.

AC/DC ELECTRICAL OPERATING RANGES

I/O	VEE	Та
10K	-5.2V ± 5%	0 to +75°C, air flow exceeding 2 m/sec
100K	-4.5V ± 5%	0 to +85°C, air flow exceeding 2 m/sec
101K	-4.75V to -5.46V	0 to +75°C, air flow exceeding 2 m/sec

2764 tbl 05

AC TEST LOAD CONDITION

*Includes probe and jig capacitance. C < 5pF (4.5, 5nS speed grades) 2764 drw 07 C < 30pF (all other speed grades)

RISE/FALL TIME

Symbol	Parameter	Min.	Тур.	Max.	Unit
tR	Output Rise Time	_	1.5		ns
tF	Output Fall Time		1.5		ns

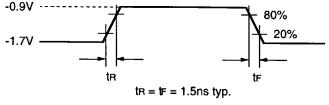
²⁷⁶⁴ tbl 06

FUNCTIONAL DESCRIPTION

The IDT10494, IDT100494, and IDT101494 BiCEMOS ECL static RAMs provide high speed with low power dissipation typical of BiCMOS ECL. These devices follow the conventional center power pinout and functionality for 16Kx4 ECL SRAMs.

READ TIMING

The read timing on these asynchronous devices is straightforward. DataOUT is held low until the device is selected by Chip Select (<u>CS</u>). The Address (ADDR) settles and data appears on the output after time tAA. Note that DataOUT is held for a short time (tOH) after the address begins to change for the next access, then ambiguous data is on the bus until a new time tAA.


WRITE TIMING

To write data to the device, a Write Pulse need be formed on the Write Enable input (<u>WE</u>) to control the write to the SRAM array. While <u>CS</u> and ADDR must be set-up when <u>WE</u> goes low, DataIN can settle after the falling edge of <u>WE</u>, giving the data path extra margin. Data is written to the memory cell at the end of the Write Pulse, and addresses and Chip Select must be held after the rising edge of the Write Pulse to ensure satisfactory completion of the cycle.

DataOUT is disabled (held low) during the Write Cycle. If <u>CS</u> is held low (active) and addresses remain unchanged, the Data OUT pins will output the written data after "Write Recovery time" (twR).

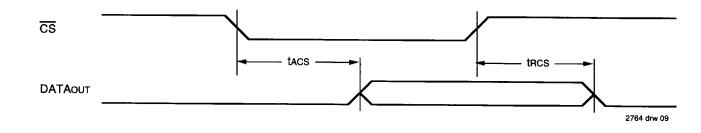
Because of the very short Write Pulse requirement, these devices can be cycled as quickly for Writes as for Reads.

AC TEST INPUT PULSE

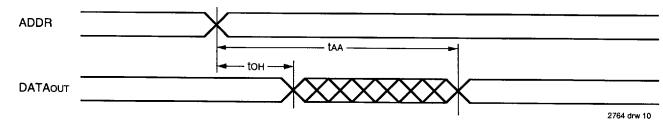
2764 drw 08

Note: All timing measurements are referenced to 50% input levels.

AC ELECTRICAL CHARACTERISTICS (Over the AC Operating Range)


		S4.5		S5		S6		\$7,8,10,15		
Symbol	Parameter ⁽¹⁾	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	cle				·	•	L	.	L	
tacs	Chip Select Access Time	_	2.0	_	2.5	—	3.0	_	3.0	ns
tRCS	Chip Select Recovery Time		2.0	_	2.5	-	3.0		3.0	ns
taa	Address Access Time		4.5		5.0	_	6.0		7.0	ns
tон	Data Hold from Address Change	2.0	-	2.0	_	2.0	-	2.0	-	ns

NOTE:


1. Input and Output reference level is 50% point of waveform.

2. Output load capacitance, C < 5pF (4.5, 5nS grade only), see "AC Test Load Condition" on previous page.

READ CYCLE GATED BY CHIP SELECT (1, 2)

READ CYCLE GATED BY ADDRESS (1, 3)

NOTE:

2. Address valid prior to or minimum of tAA-tACS before CS active.

3. CS active prior to or minimum tAA-tACS after address valid.

2764 tbl 07

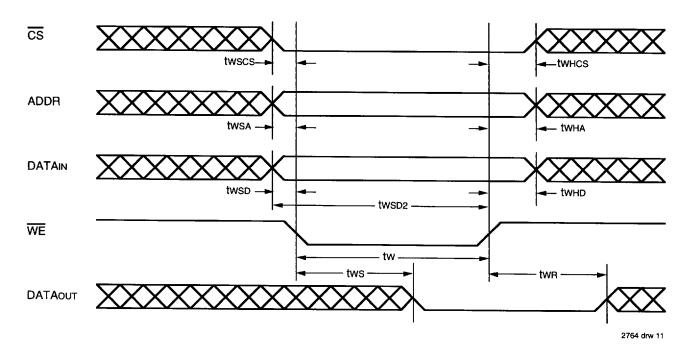
5

^{1.} WE is high for read cycle.

AC ELECTRICAL CHARACTERISTICS (Over the AC Operating Range)

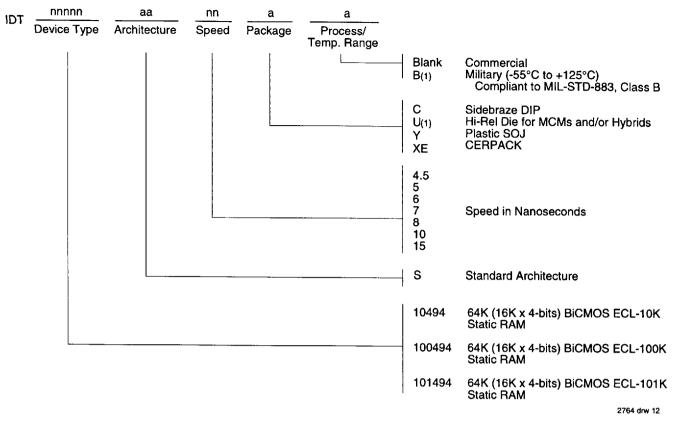
		S4	4.5	5	S5	S	S6		10,15	
Symbol	Parameter ⁽¹⁾	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cy	cle								·	
tw	Write Pulse Width (twsa = minimum)	3.5	-	4.0		4.0		5.0	-	ns
twsp	Data Set-up Time	0	-	0		0	_	0	_	ns
twsp2 ⁽²⁾	Data Set-up Time to WE High	3.5	_	4.0		5.0	-	5.0	-	ns
twsa	Address Set-up Time (tw = minimum)	0	-	0	_	0	—	0	-	ns
twscs	Chip Select Set-up Time	0	_	0	_	0	_	0	_	ns
twhD	Data Hold Time	1.0	_	1.0		1.0	_	1.0	_	ns
tWHA	Address Hold Time	1.0		1.0	_	1.0	_	1.0	_	ns
twhcs	Chip Select Hold Time	1.0		1.0	_	1.0	_	1.0	_	ns
tws	Write Disable Time	—	2.5		3.0	—	4.0	_	5.0	ns
twR ⁽³⁾	Write Recovery Time	-	2.5	_	3.0	—	4.0	-	5.0	ns

2764 tbl 08


NOTE:

1. Input and Output reference level is 50% point of waveform.

2. twsb is specified with respect to the falling edge of <u>WE</u> for compatibility with bipolar part specifications, but this device actually only requires twsb2 with respect to rising edge of <u>WE</u>.


3. two is defined as the time to reflect the newly written data on the Data Outputs (Q0 to Q3) when no new Address Transition occurs.

WRITE CYCLE TIMING DIAGRAM

6

ORDERING INFORMATION

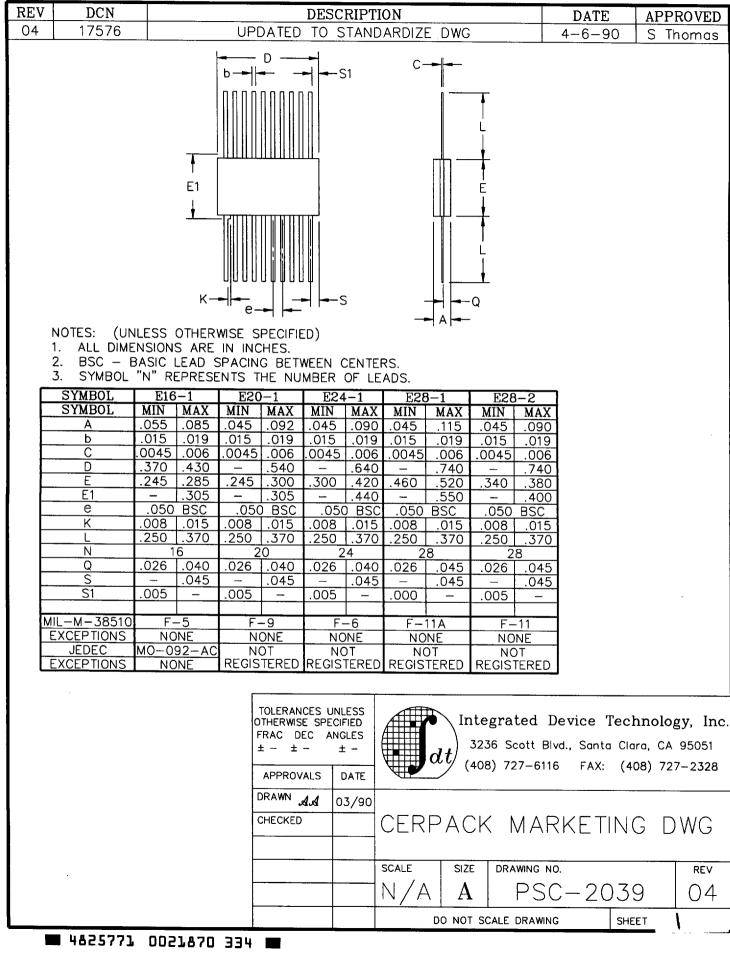
NOTE:

1. Please contact your IDT Sales Representative for more information on specifications and availability of Military and Die products.

Integrated Device Technology, Inc. reserves the right to make changes to the specifications in this data sheet in order to improve design or performance and to supply the best possible product.

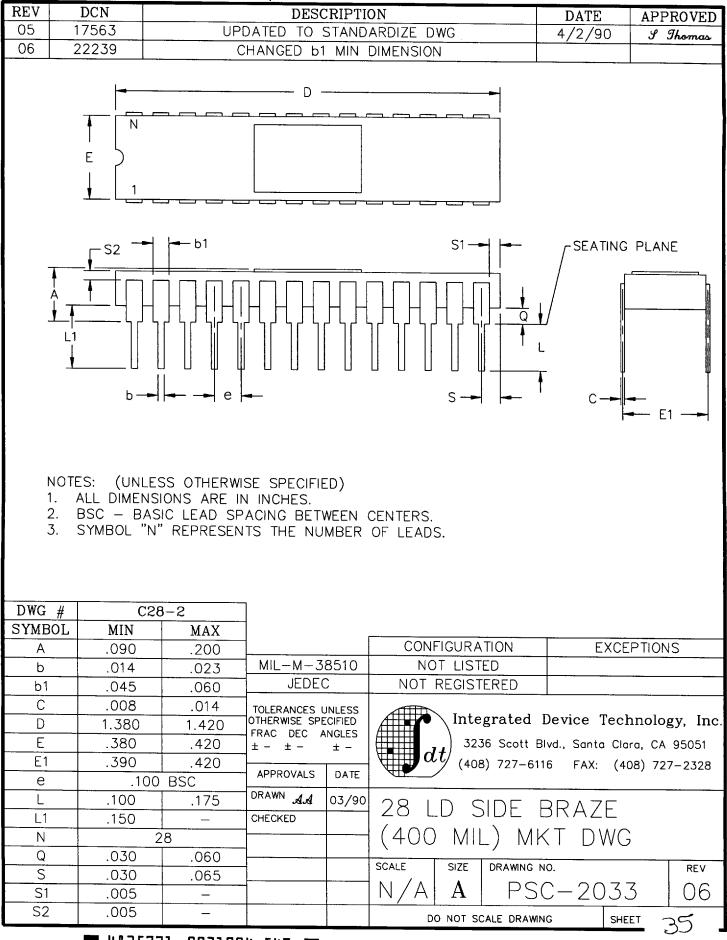
Integrated Device Technology, Inc.

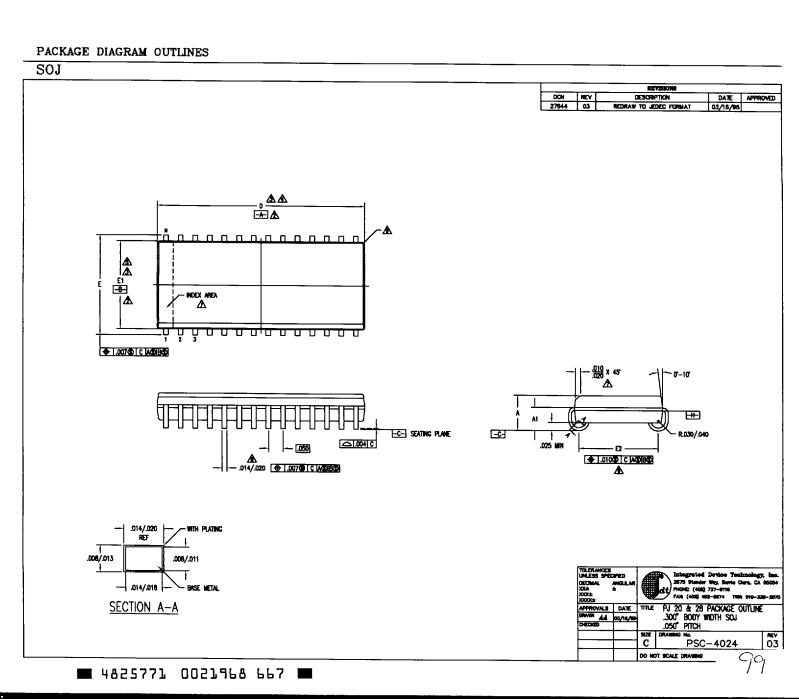
2975 Stender Way, Santa Clara, CA 95054-3090


4825771 0022037 742 🖿

Telephone: (408) 727-6116

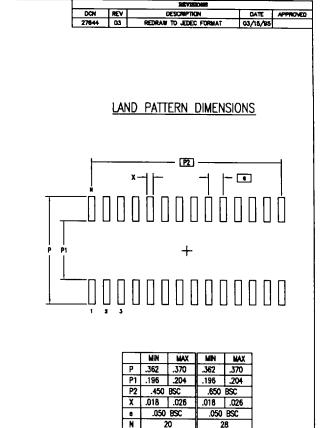
FAX 408-492-8674

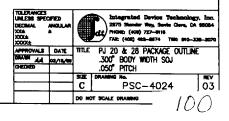

PACKAGE DIAGRAM OUTLINES


CERPACK

PACKAGE DIAGRAM OUTLINES

SIDEBRAZE (Cont


PACKAGE DIAGRAM OUTLINES


SOJ (Continued)

	DWG 🛔		S020-	1	DW	G 🛔	S028-5		
Ч Ч Ч	JEDE	C VARIAT	ION	N	JEDE	C VARIAT	ION		
		AD		P	AF			ģ	
Ĉ	MIN	NOM	MAX	Ê	MIN	NOM	MAX	É	
A	.120	.130	.140		.120	.130	.140		
A1	.078	.086	.095		.078	.085	.095		
0	.500	.506	.512	3,4	.700	.706	.712	3,4	
E	.335	.340	.347		.335	.340	.347		
E1	.292	.296	.300	3,5	.292	.296	.300	3,5	
E2	.262	.267	.272	6	.262	.267	.272	6	
N		20				28	-	1	

NOTES:

- 1 ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982
- ⚠ DIMENSIONS D AND E1 ARE TO BE DETERMINED AT DATUM PLANE -H-
- A DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED .006 PER SIDE
- A DIMENSION E1 DO NOT INCLUDE INTERLEAD FLASH OR PROTRUSSIONS. INTERLEAD FLASH OR PROTRUSSIONS SHALL NOT EXCEED .006 PER SIDE
- A DIMENSION E2 TO BE DETERMINED AT SEATING PLANE -C-- CONTACT POINT
- THE CHAMFER ON THE PACKAGE BODY IS OPTIONAL. IF IT IS NOT PRESENT, A VISUAL INDEX FEATURE MUST BE LOCATED WITHIN THE ZONE INDICATED
- LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION IS .004 IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION
- A EXACT SHAPE OF EACH CORNER IS OPTIONAL
- 10 ALL DIMENSIONS ARE IN INCHES
- 11 This outline conforms to jedec publication 95 registration mo-088, variation ad & AF

