

HIGH-SPEED 2K X 8 FOURPORT™ STATIC RAM

IDT7052S/L

FEATURES:

· High-speed access

— Military: 20/25/35/45ns (max.)

Commercial: 15/20/25/35/45ns (max.)

· Low-power operation

- IDT7052S

Active: 750mW (typ.) Standby: 10mW (typ.)

- IDT7052L

Active: 750mW (typ.) Standby: 1.5mW (typ.)

 True Four-Port memory cells which allow simultaneous reads of the same memory locations

 Fully asynchronous operation from each of the four ports: P1, P2, P3, P4

 Versatile control for write-inhibit: separate BUSY input to control write-inhibit for each of the four ports

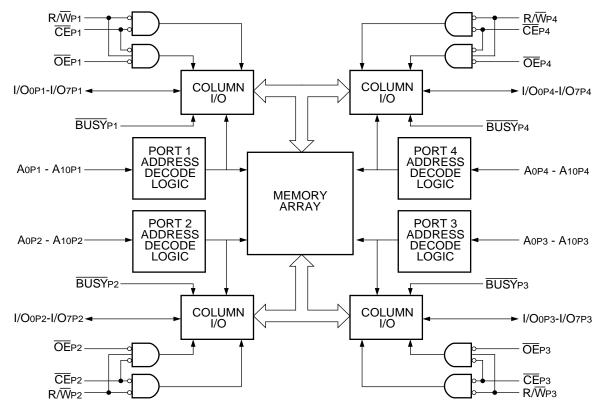
Battery backup operation—2V data retention

• TTL-compatible; single 5V (±10%) power supply

 Available in several popular hermetic and plastic packages for both through-hole and surface mount

Military product compliant to MIL-STD-883, Class B

Industrial temperature range (-40°C to +85°C) is available, tested to military electrical specifications


DESCRIPTION:

The IDT7052 is a high-speed 2K x 8 FourPort Static RAM designed to be used in systems where multiple access into a common RAM is required. This FourPort Static RAM offers increased system performance in multiprocessor systems that have a need to communicate in real time and also offers added benefit for high-speed systems in which multiple access is required in the same cycle.

The IDT7052 is also designed to be used in systems where on-chip hardware port arbitration is not needed. This part lends itself to those systems which cannot tolerate wait states or are designed to be able to externally arbitrate or withstand contention when all ports simultaneously access the same FourPort RAM location.

The IDT7052 provides four independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. It is the user's responsibility to ensure data integrity when simultaneously accessing the same memory location

FUNCTIONAL BLOCK DIAGRAM

The IDT logo and FourPort are trademarks of Integrated Device Technology, Inc.

2674 drw 01

AUGUST 1995

from all ports. An automatic power down feature, controlled by \overline{CE} , permits the on-chip circuitry of each port to enter a very low power standby power mode.

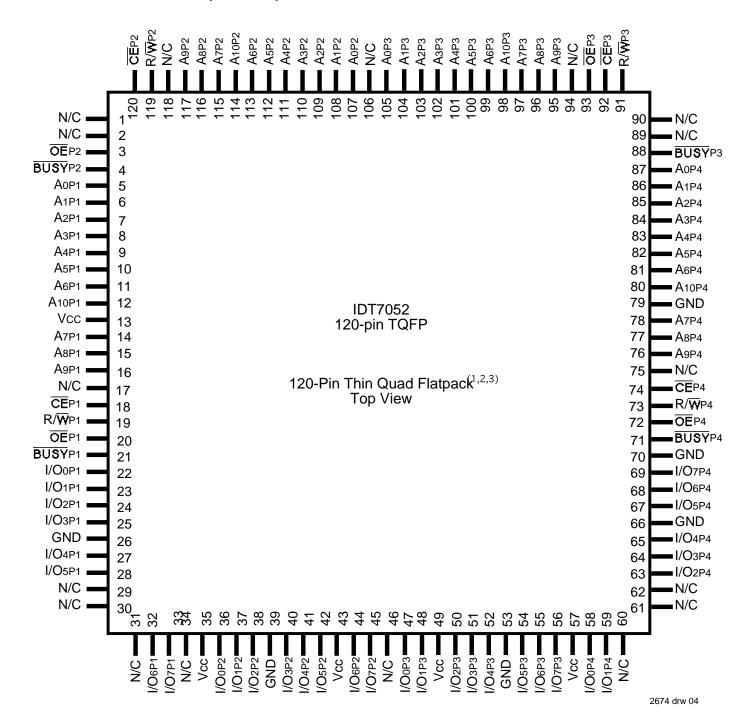
Fabricated using IDT's CMOS high-performance technology, this four port RAM typically operates on only 750mW of power. Low-power (L) versions offer battery backup data retention capability, with each port typically consuming 50µW

from a 2V battery.

The IDT7052 is packaged in a ceramic 108-pin PGA, a plastic 132-pin quad flatpack, and a 120-pin thin quad flatpack. Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

PIN CONFIGURATIONS

31	80	77	74	72	69	68	65	63	60	57	54
R/W P2	NC	A7 P2	A ₅ P2	A ₃ P2	Ao P2	Ao P3	A3 P3	A₅ P3	A ₇ P3	NC	R/W P3
34	83	78	76	73	70	67	64	61	59	56	53
BUSY P2	OE P2	A ₈ P2	A10 P2	A ₄ P2	Aı P2	A ₁ P3	A ₄ P3	A ₁₀ P3	A ₈ P3	OE P3	BUSY P3
37	86	82	79	75	71	66	62	58	55	51	50
A2 P1	Aı P1	CE P2	A9 P2	A ₆ P2	A2 P2	A₂ P3	A6 P3	A ₉ P3	CE P3	A1 P4	A ₂ P4
90	88	85					1		52	49	47
A5 P1	A3 P1	Ao P1							A ₀ P4	A ₃ P4	A ₅ P4
92	91	89	1						48	46	45
A ₁₀ P1	A6 P1	A ₄ P1							A ₄ P4	A ₆ P4	A ₁₀ P4
95	94	93	1						44	43	42
A8 P1	A7 P1	V cc			IDT G1	7052 08-1			GND	A7 P4	A ₈ P4
96	97	98	1		01	00 1			39	40	41
A9 P1	NC	CE P1			108-F	Pin PGA ^{(1,;}	2,3)		CE P4	NC	A ₉ P4
99	100	102	1		Тор	View			35	37	38
R/W P1	OE P1	I/O ₀ P1							GND	ŌE P4	R/W P4
101	103	106	1						31	34	36
BUSY P1	I/O ₁ P1	GND							GND	I/O ₇ P4	BUSY P4
104	105	1	4	8	12	17	21	25	28	32	33
I/O₂ P1	I/O₃ P1	I/O ₆ P1	Vćc	GND	Vcc	V cc	GND	Vcc	I/O ₂ P4	I/O₅ P4	I/O ₆ P4
107	2	5	7	10	13	16	19	22	24	29	30
I/O ₄ P1	I/O7 P1	I/O ₀ P2	I/O ₂ P2	I/O ₄ P2	I/O ₆ P2	I/O ₁ P3	I/O ₃ P3	I/O ₅ P3	I/O7 P3	I/O ₃ P4	I/O ₄ P4
108	3	6	9	11	14	15	18	20	23	26	27
I/O₅ P1	NC	I/O ₁ P2	I/O ₃ P2	I/O ₅ P2	I/O ₇ P2	I/O ₀ P3	I/O ₂ P3	I/O ₄ P3	I/O ₆ P3	I/Oo P4	I/O ₁ P4
	В	С		E	F	G	Н	J	K	L	M
Α		•	_			_					


- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.
- 3. This text does not indicate orientation of the actual part-marking.

PIN CONFIGURATIONS (CONT'D.)

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.
- 3. This text does not indicate orientation of the actual part-marking.

PIN CONFIGURATIONS (CONT'D.)

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.
- 3. This text does not indicate orientation of the actual part-marking.

PIN CONFIGURATIONS(1,2)

Symbol	Pin Name
Ao P1 – A10 P1	Address Lines – Port 1
Ao P2 – A10 P2	Address Lines – Port 2
Ao P3 – A10 P3	Address Lines – Port 3
Ao P4 – A10 P4	Address Lines – Port 4
I/O ₀ P1 – I/O ₇ P1	Data I/O – Port 1
I/O ₀ P2 – I/O ₇ P2	Data I/O – Port 2
I/Oo P3 – I/O7 P3	Data I/O – Port 3
I/Oo P4 – I/O7 P4	Data I/O – Port 4
R/W P1	Read/Write – Port 1
R/W P2	Read/Write – Port 2
R/W P3	Read/Write – Port 3
R/W P4	Read/Write – Port 4
GND	Ground
CE P1	Chip Enable – Port 1
CE P2	Chip Enable – Port 2
CE P3	Chip Enable – Port 3
CE P4	Chip Enable – Port 4
OE P1	Output Enable – Port 1
OE P2	Output Enable – Port 2
OE P3	Output Enable – Port 3
OE P4	Output Enable – Port 4
BUSY P1	Write Disable – Port 1
BUSY P2	Write Disable – Port 2
BUSY P3	Write Disable – Port 3
BUSY P4	Write Disable – Port 4
Vcc	Power

NOTES:

2674 tbl 01

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Commercial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	٧
ТА	Operating Temperature	0 to +70	-55 to +125	ç
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	ů
Тѕтс	Storage Temperature	-55 to +125	-65 to +150	ç
lout	DC Output Current	50	50	mA

NOTE:

2674 tbl 02

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VTERM must not exceed Vcc + 0.5V for more than 25% of the cycle time or 10ns maximum, and is limited to ≤ 20mA for the period of VTERM ≥ Vcc + 0.5V.

CAPACITANCE (TQFP Package Only)

 $(TA = +25^{\circ}C, f = 1.0MHz)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	9	pF
Соит	Output Capacitance	Vout = 0V	10	pF

NOTE:

2674 tbl 03

- This parameter is determined by device characterization but is not production tested.
- 3dV references the interpolated capacitance when the input and the output signals switch from 0V to 3V or from 3V to 0V.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Ambient Temperature	GND	Vcc
Military	−55°C to +125°C	0V	5.0V ± 10%
Commercial	0°C to +70°C	0V	5.0V ± 10%

2674 tbl 04

RECOMMENDED DC OPERATING CONDITIONS

	i _				
Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
ViH	Input High Voltage	2.2	_	6.0 ⁽²⁾	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V

NOTE:

- 1. VIL \geq -1.5V for pulse width less than 10ns.
- 2. VTERM must not exceed Vcc + 0.5V.

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE^(1, 5) (VCC = $5.0V \pm 10\%$)

					IDT7052X15 COM'L. ONLY				
Symbol	Parameter	Condition	Version	on	Typ. (2)		Typ (2)	Max.	Unit
ICC1	Operating Power Supply Current	CE = VIL Outputs Open	MIL.	S L	150 150	400 340	150 150	380 320	mA
	(All Ports Active)	$f = 0^{(4)}$	COM'L.	S L	150 150	340 290	150 150	320 270	
ICC2	Dynamic Operating Current	CE = VIL Outputs Open	MIL.	S L	240 210	420 360	230 200	410 350	mΑ
	(All Ports Active)	$f = fMAX^{(5)}$	COM'L.	S L	260 ₀ 230	390 345	240 210	370 325	
ISB	Standby Current (All Ports — TTL	$\overline{CE} = VIH$ $f = fMAX^{(5)}$	MIL.	S L	90 (80	135 105	80 70	125 115	mA
	Level Inputs)		COM'L.	S	80 70	105 90	70 60	95 80	
ISB1	Full Standby Current (All Ports — All	All Ports CE ≥ Vcc - 0.2V	MIL.	S L	1.5	30 4.5	1.5 .3	30 4.5	mA
	CMOS Level Inputs)	$\begin{aligned} &\text{Vin} \geq \text{Vcc - 0.2V or} \\ &\text{Vin} \leq 0.2\text{V, f} = 0^{(4)} \end{aligned}$	COM'L.	S L	1 <u>.5</u> .3	1.5 .3	1.5 .3	1.5 .3	

						2X25	IDT70	52X35	IDT7	052X45	
Symbol	Parameter	Condition	Version	n	Typ. ⁽²⁾	Max.	Typ . ⁽²⁾	Max.	Typ (.2)	Max.	Unit
ICC1	Operating Power Supply Current	CE = VIL Outputs Open	MIL.	S L	150 150	315 310	150 150	360 300	150 150	360 300	mA
	(All Ports Active)	$f = 0^{(4)}$	COM'L.	S L	150 150	300 250	150 150	300 250	150 150	300 250	
ICC2	Dynamic Operating Current	CE = VIL Outputs Open	MIL.	S L	225 190	400 340	210 180	395 330	195 170	390 325	mA
	(All Ports Active)	$f = fMAX^{(5)}$	COM'L.	S L	225 195	350 305	210 180	335 290	195 170	330 285	
ISB	Standby Current (All Ports — TTL	$\overline{CE} = VIH$ $f = fMAX^{(5)}$	MIL.	S L	45 40	115 85	40 35	110 80	35 30	105 75	mA
	Level Inputs)		COM'L.	S L	60 50	85 70	40 35	75 60	35 30	70 55	
ISB1	Full Standby Current (All Ports — All	All Ports CE ≥ Vcc - 0.2V	MIL.	S L	1.5 .3	30 4.5	1.5 .3	30 4.5	1.5 .3	30 4.5	mA
	CMOS Level Inputs)	$\begin{aligned} &\text{Vin} \geq \text{Vcc - 0.2V or} \\ &\text{Vin} \leq \text{0.2V, f} = 0^{(4)} \end{aligned}$	COM'L.	S L	1.5 .3	1.5 1.5	1.5 .3	1.5 1.5	1.5 .3	1.5 1.5	

NOTES:

- 1. "X" in part number indicates power rating (S or L).
- 2. Vcc = 5V, TA = +25°C and are not production tested.
- 3. f = 0 means no address or control lines change.
- 4. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRc, and using "AC Test Conditions" of input levels of GND to 3V.
- 5. For the case of one port, divide the appropriate current above by four.

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE ($VCC = 5.0V \pm 10\%$)

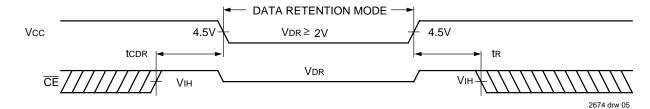
			IDT7052S		IDT70		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
ILI	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, Vin = 0V to Vcc	_	10	_	5	μΑ
ILO	Output Leakage Current	$\overline{\text{CE}} = \text{ViH}, \text{VOUT} = 0 \text{V to VCC}$	_	10	_	5	μΑ
Vol	Output Low Voltage	IOL = 4mA	_	0.4	_	0.4	V
Vон	Output High Voltage	IOH = -4mA	2.4	_	2.4	_	V

NOTES:

2674 tbl 06

2674 tbl 08

DATA RETENTION CHARACTERISTICS OVER ALL TEMPERATURE RANGES


(L Version Only) VLC = 0.2V, VHC = VCC - 0.2V

Symbol	Parameter	Test Cond	Min.	Typ. ⁽¹⁾	Max.	Unit	
Vdr	Vcc for Data Retention	Vcc = 2V		2.0	_	_	V
ICCDR	Data Retention Current	CE ≥ VHC	MIL.	_	25	1800	μΑ
		VIN ≥ VHC or ≤ VLC COM'L.		_	25	600	
tcdr ⁽³⁾	Chip Deselect to Data Retention Time			0	_		ns
tR ⁽³⁾	Operation Recovery Time			tRC ⁽²⁾	_		ns

NOTES:

- 1. VCC = 2V, $TA = +25^{\circ}C$
- 2. tRC = Read Cycle Time
- 3. This parameter is guaranteed but not production tested.

LOW Vcc DATA RETENTION WAVEFORM

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	See Figure 1
<u> </u>	2674 tbl 09

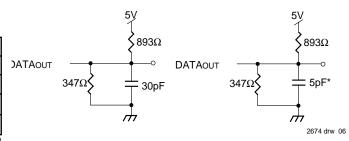
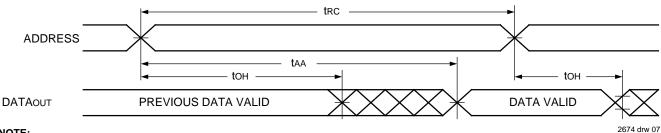


Figure 1. Output Test Load (for tLz, tHz, twz, tow)

Figure 2. Output Test Load (for tLz, tHz, twz, tow) *Including scope and jig

^{1.} At Vcc≤2.0V input leakages are undefined.

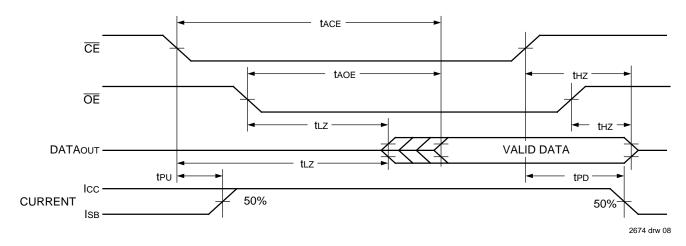
AC ELECTRICAL CHARACTERISTICS OVER THE **OPERATING TEMPERATURE AND SUPPLY VOLTAGE⁽³⁾**


		IDT7052X15 COM'L. ONLY		IDT7052X20		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
READ C	YCLE		2			
trc	Read Cycle Time	15		20	_	ns
taa	Address Access Time	_	(V) 155	_	20	ns
tace	Chip Enable Access Time		1 5	_	20	ns
taoe	Output Enable Access Time	— 5	8	_	10	ns
tон	Output Hold from Address Change	0 20	 }_	0	_	ns
tLZ	Output Low-Z Time ^(1, 2)	5	7 —	5	_	ns
tHZ	Output High-Z Time ^(1, 2)	(0 <i>I</i> S)	12	_	12	ns
tpu	Chip Enable to Power Up Time ⁽²⁾		_	0	_	ns
tPD	Chip Disable to Power Down Time ⁽²⁾	5	15	_	20	ns

		IDT7052X25		IDT7052X35		IDT7052X45		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE								
trc	Read Cycle Time	25	_	35	_	45	_	ns
taa	Address Access Time	_	25	_	35	_	45	ns
tACE	Chip Enable Access Time	_	25	_	35	_	45	ns
taoe	Output Enable Access Time	_	15	_	25	_	30	ns
ton	Output Hold from Address Change		_	0	_	0	_	ns
tLZ	Output Low-Z Time ^(1, 2)		_	5	_	5	_	ns
tHZ	Output High-Z Time ^(1, 2)		15	_	15	_	20	ns
tpu	Chip Enable to Power Up Time ⁽²⁾		_	0	_	0	_	ns
tPD	Chip Disable to Power Down Time ⁽²⁾	_	25		35	_	45	ns

2674 tbl 10

- 1. Transition is measured ±200mV from low or high impedance voltage with the Output Test Load (Figures 1 and 2).
- 2. This parameter is guaranteed but is not production tested.
- 3. "X" in part number indicates power rating (S or L).


TIMING WAVEFORM OF READ CYCLE NO. 1, ANY PORT(1)

NOTE:

1. $R/\overline{W} = VIH$, $\overline{OE} = VIL$, and $\overline{CC} = VIL$.

TIMING WAVEFORM OF READ CYCLE NO. 2, ANY PORT(1, 3)

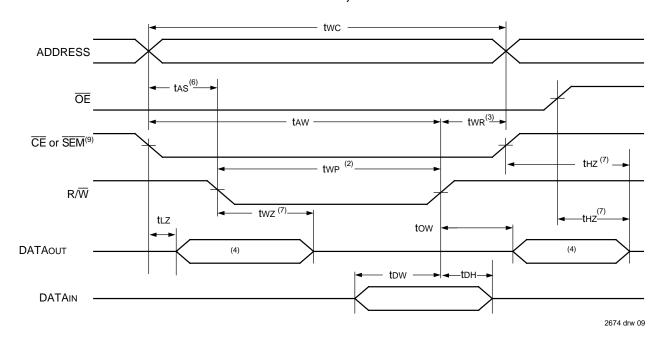
NOTES:

- 1. $R/\overline{W} = V_{IH}$ for Read Cycles.
- 2. Addresses valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE

			052X15 L. ONLY	IDT70	IDT7052X20			
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit		
WRITE C	WRITE CYCLE							
twc	Write Cycle Time	15		20	_	ns		
tew	Chip Enable to End-of-Write	12		15	_	ns		
taw	Address Valid to End-of-Write	12		15	_	ns		
tas	Address Set-up Time	0	(007	0	_	ns		
twp	Write Pulse Width ⁽³⁾	12		15	_	ns		
twr	Write Recovery Time	0		0	_	ns		
tow	Data Valid to End-of-Write	12 🗆	—	15	_	ns		
tHZ	Output High-Z Time ^(1, 2)	_	12	_	15	ns		
tDH	Data Hold Time	0		0	_	ns		
twz	Write Enabled to Output in High-Z ^(1, 2)	-00	12	_	12	ns		
tow	Output Active from End-of-Write ^(1, 2)	0		0	_	ns		
twdd	Write Pulse to Data Delay ⁽⁴⁾	- (0	25	_	35	ns		
tDDD	Write Data Valid to Read Data Delay ⁽⁴⁾	7	20	_	30	ns		
BUSY INF	PUT TIMING					-		
twB	Write to BUSY ⁽⁵⁾	0	<u> </u>	0	_	ns		
twH	Write Hold After BUSY ⁽⁶⁾	12	_	15	_	ns		

NOTES:

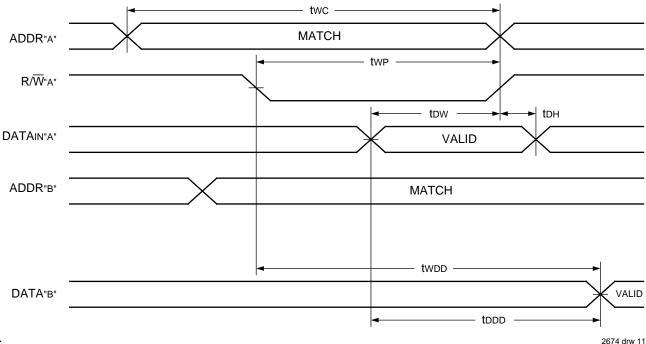

- 1. Transition is measured ±200mV from low or high impedance voltage with the Output Test Load (Figure 2).
- 2. This parameter is guaranteed but is not production tested.
- 3. If \overline{OE} is LOW during a R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If \overline{OE} is high during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp .Specified for \overline{OE} at high (refer to "Timing Waveform of Write Cycle", Note 7).
- 4. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read".
- 5. To ensure that the write cycle is inhibited on port "A" during contention from Port "B". Port "A" may be any of the four ports and Port "B" is any other port.
- 6. To ensure that a write cycle is completed on port "A" after contention from Port "B". Port "A" may be any of the four ports and Port "B" is any other port.
- 7. "X" in part number indicates power rating.

AC ELECTRICAL CHARACTERISTICS OVER THE **OPERATING TEMPERATURE AND SUPPLY VOLTAGE**

		IDT70	52X25	IDT7052X35		IDT7052X45		
Symbol	Parameter	Min.	Max.	Min. Max.		Min.	Max.	Unit
WRITE C	WRITE CYCLE							
twc	Write Cycle Time	25	_	35	_	45	_	ns
tew	Chip Enable to End-of-Write	20	_	30	_	35	_	ns
taw	Address Valid to End-of-Write	20	_	30	_	35	_	ns
tas	Address Set-up Time	0	_	0	_	0	_	ns
twp	Write Pulse Width ⁽³⁾	20	_	30	_	35		ns
twr	Write Recovery Time	0	_	0	_	0	_	ns
tow	Data Valid to End-of-Write	15	_	20	_	20	_	ns
tHZ	Output High-Z Time ^(1, 2)	_	15	_	15	_	20	ns
tDH	Data Hold Time	0	_	0	_	0	_	ns
twz	Write Enabled to Output in High-Z ^(1, 2)	_	15	_	15	_	20	ns
tow	Output Active from End-of-Write ^(1, 2)	0	_	0	_	0	_	ns
twdd	Write Pulse to Data Delay ⁽⁴⁾	_	45	_	55	_	65	ns
tDDD	Write Data Valid to Read Data Delay ⁽⁴⁾		35	_	45	_	55	ns
BUSY INPUT TIMING								
twB	Write to BUSY ⁽⁵⁾	0	_	0	_	0	_	ns
twH	Write Hold After BUSY ⁽⁶⁾	15	_	20	_	20	_	ns

- 1. Transition is measured ±200mV from low or high impedance voltage with the Output Test Load (Figure 2).
- This parameter is guaranteed but is not production tested.
- 3. If \overline{OE} is LOW during a R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If \overline{OE} is high during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp .Specified for \overline{OE} at high (refer to "Timing Waveform of Write Cycle", Note 7).
- Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read".
 To ensure that the write cycle is inhibited on port "A" during contention from Port "B". Port "A" may be any of the four ports and Port "B" is any other port.
- 6. To ensure that a write cycle is completed on port "A" after contention from Port "B". Port "A" may be any of the four ports and Port "B" is any other port.
- 7. "X" in part number indicates power rating.

TIMING WAVEFORM OF WRITE CYCLE NO. 1, R/W CONTROLLED TIMING(5,8)



TIMING WAVEFORM OF WRITE CYCLE NO. 2, $\overline{\text{CE}}$ CONTROLLED TIMING^(1, 5)

- 1. R/W or CE must be HIGH during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of a low \overline{CE} and a low R/ \overline{W} .
- 3. two is measured from the earlier of \overline{CE} or R/\overline{W} going HIGH to the end of write cycle.
- 4. During this period, the I/O pins are in the output state, and input signals must not be applied.
- 5. If the CE low transition occurs simultaneously with or after the R/W low transition, the outputs remain in the high impedance state.
- 6. Timing depends on which enable signal is asserted last, $\overline{\text{CE}}$ or R/\overline{W} .
- 7. Transition is measured ±200mV from low or high impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed but is not production tested.
- 8. If \overline{OE} is LOW during a $R\overline{W}$ controlled write cycle, the write pulse width must be the larger of two or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If \overline{OE} is HIGH during an $R\overline{W}$ controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
- 9. To access RAM, $\overline{CE} = VIL$ and $\overline{SEM} = VIH$. To access semaphore, $\overline{CE} = VIH$ and $\overline{SEM} = VIL$. tew must be met for either condition.


TIMING WAVEFORM OF WRITE WITH PORT-TO-PORT READ(1, 2, 3)

NOTES:

- 1. Assume \overline{BUSY} input = VIH and \overline{CE} = VIL for the writing port.
- 2. $\overline{OE} = V_{IL}$ for the reading ports.
- 3. All timing is the same for left and right ports. Port "A" may be either of the four ports and Port "B" is any other port.

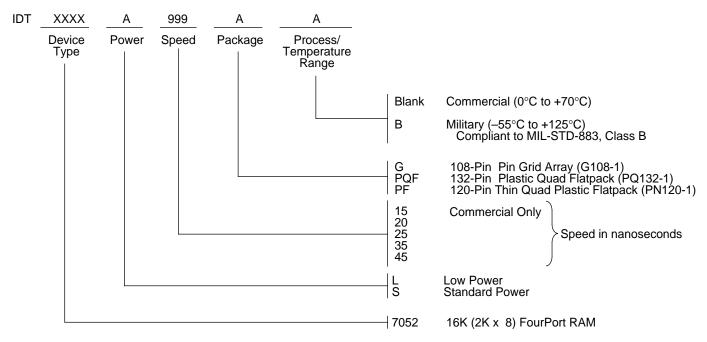
TIMING WAVEFORM OF WRITE WITH BUSY INPUT

NOTES:

1. \overline{BUSY} is aserted on Port "B" blocking R/ \overline{W} "B" until \overline{BUSY} "B" goes HIGH.

FUNCTIONAL DESCRIPTION

The IDT7052 provides four ports with separate control, address, and I/O pins that permit independent access for reads or writes to any location in memory. These devices have an automatic power down feature controlled by $\overline{\text{CE}}$. The $\overline{\text{CE}}$ controls on-chip power down circuitry that permits the respective port to go into standby mode when not selected ($\overline{\text{CE}}$ HIGH). When a port is enabled, access to the entire memory array is permitted. Each port has its own Output Enable control ($\overline{\text{OE}}$). In the read mode, the port's $\overline{\text{OE}}$ turns on the output drivers when set LOW. READ/WRITE conditions are illustrated in the table below.


TABLE I - READ/WRITE CONTROL

	Any	Port ⁽¹)	
R/W	CE	ŌĒ	D0-7	Function
Х	Н	Х	Z	Port Deselected: Power-Down
Х	Н	Х	Z	$\overline{\text{CE}}$ P1 = $\overline{\text{CE}}$ P2 = $\overline{\text{CE}}$ P3 = $\overline{\text{CE}}$ P4 =VIH Power Down Mode, ISB or ISB1
L	L	Х	DATAIN	Data on port written into memory ^(2, 3)
Н	L	L	DATAout	Data in memory output on port
Х	Х	Н	Z	Outputs Disabled

NOTES:

- 1. "H" = VIH, "L" = VIL, "X" = Don't Care, "Z "= High Impedance
- 2. If $\overline{\text{BUSY}} = \text{VIL}$, write is blocked.
- 3. For valid write operation, no more than one port can write to the same address location at the same time.

ORDERING INFORMATION

2674 drw 13A