

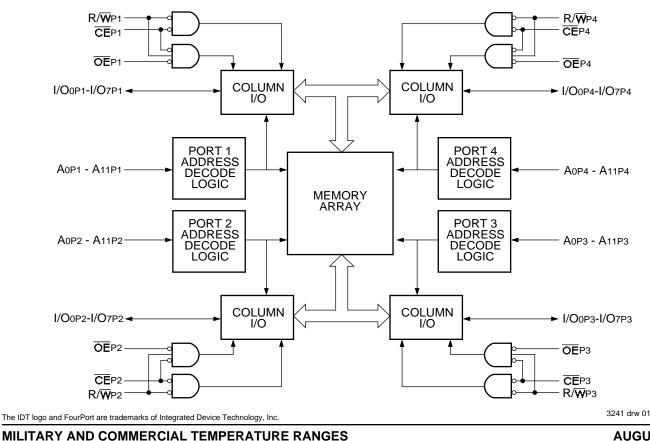
HIGH-SPEED 4K X 8 FOURPORT™

IDT7054S/L PRELIMINARY

STATIC RAM

FEATURES:

- High-speed access
 - Military: 20/25/35/45ns (max.)
 - Commercial: 15/20/25/35/45ns (max.)
- · Low-power operation — IDT7054S
 - Active: 750mW (typ.) Standby: 10mW (typ.)
 - IDT7054L Active: 750mW (typ.) Standby: 1.5mW (typ.)
- True Four-Port memory cells which allow simultaneous reads of the same memory locations
- Fully asynchronous operation from each of the four ports: P1, P2, P3, P4
- Battery backup operation—2V data retention
- TTL-compatible; single 5V (±10%) power supply
- Available in several popular hermetic and plastic packages for both through-hole and surface mount
- Military product compliant to MIL-STD-883, Class B
- Industrial temperature range (-40°C to +85°C) is available, tested to military electrical specifications


FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

The IDT7054 is a high-speed 4K x 8 FourPort Static RAM designed to be used in systems where multiple access into a common RAM is required. This FourPort Static RAM offers increased system performance in multiprocessor systems that have a need to communicate in real time and also offers added benefit for high-speed systems in which multiple access is required in the same cvcle.

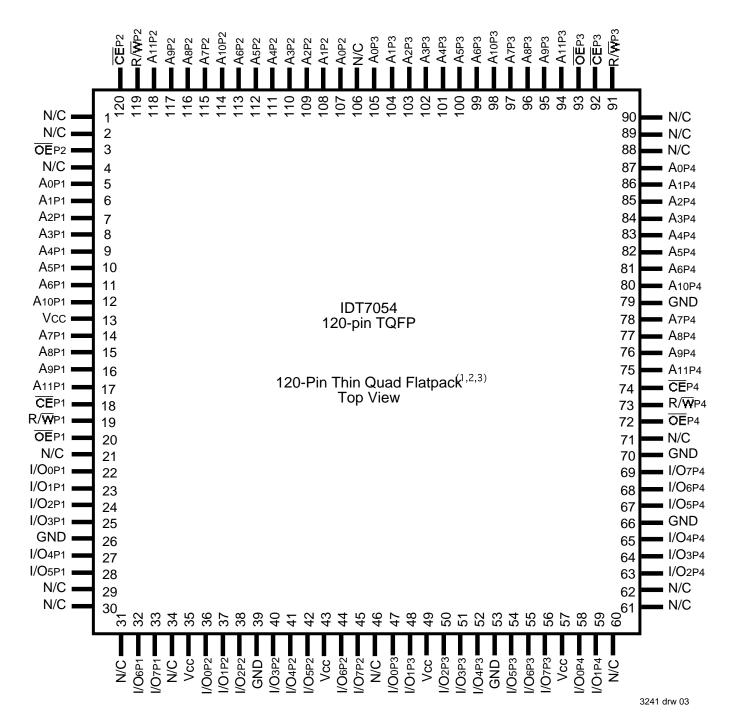
The IDT7054 is also designed to be used in systems where on-chip hardware port arbitration is not needed. This part lends itself to those systems which cannot tolerate wait states or are designed to be able to externally arbitrate or withstand contention when all ports simultaneously access the same FourPort RAM location.

The IDT7054 provides four independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. It is the user's responsibility to ensure data integrity when simultaneously accessing the same memory location from all ports. An automatic power down feature, controlled by \overline{CE} , permits the on-chip circuitry of each port to enter a very low power standby power mode.

Fabricated using IDT's CMOS high-performance technology, this four port RAM typically operates on only 750mW of power. Low-power (L) versions offer battery backup data retention capability, with each port typically consuming 50μ W from a 2V battery.

The IDT7054 is packaged in a ceramic 108-pin PGA and a 120-pin thin quad flatpack. Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

PIN CONFIGURATIONS


81	80	77	74	72	69	68	65	63	60	57	54	1
R/ W P2	A11 P2	A7 P2	A5 P2	Аз Р2	Ao P2	A0 P3	A3 P3	A5 P3	A7 P3	A11 P3	R/ W P3	12
84	83	78	76	73	70	67	64	61	59	56	53	1
NC	OE P2	A8 P2	A10 P2	A4 P2	A1 P2	A1 P3	A4 P3	A10 P3	A8 P3	OE P3	NC	11
87	86	82	79	75	71	66	62	58	55	51	50	1
A2 P1	A1 P1	CE	A9 P2	A6 P2	A2 P2	A2 P3	A6 P3	A9 P3	CE P3	A1 P4	A2 P4	10
90	88	85							52	49	47	1
A5 P1	Аз Р1	Ao P1							A0 P4	A3 P4	A5 P4	09
92	91	89	1						48	46	45	
A10 P1	A6 P1	A4 P1							A4 P4	A6 P4	A10 P4	08
95	94	93	1						44	43	42	1
A8 P1	A7 P1	Vcc			IDT G1	7054 08-1			GND	A7 P4	A8 P4	07
96	97	98	1		•				39	40	41	
A9 P1	A11 P1	CE P1			108-F	Pin PGA	,3)		CE P4	A11 P4	A9 P4	06
99	100	102	1		Тор	View			35	37	38	1
R/ W P1	OE P1	I/O0 P1							GND	OE P4	R/ W P4	05
101	103	106	1						31	34	36	1
NC	I/O1 P1	GND							GND	I/O7 P4	NC	04
104	105	1	4	8	12	17	21	25	28	32	33	1
I/O2 P1	I/O3 P1	I/O6 P1	Vcc	GND	Vcc	Vcc	GND	Vcc	I/O2 P4	I/O5 P4	I/O6 P4	03
107	2	5	7	10	13	16	19	22	24	29	30	1
I/O₄ P1	I/O7 P1	I/O0 P2	I/O2 P2	I/O4 P2	I/O6 P2	I/O1 P3	I/O3 P3	I/O5 P3	I/O7 P3	I/O3 P4	I/O4 P4	02
108	3	6	9	11	14	15	18	20	23	26	27	1
I/O₅ P1	NC	I/O1 P2	I/O3 P2	I/O5 P2	I/O7 P2	I/O0 P3	I/O2 P3	I/O4 P3	I/O6 P3	I/Oo P4	I/O1 P4	01
A	В	С	D	E	F	G	H	J	к	L	М	-
											324 dr w 02	

Index

NOTES:

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.
- 3. This text does not indicate orientation of the actual part-marking.

PIN CONFIGURATIONS (CONT'D.)

NOTES:

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.
- 3. This text does not indicate orientation of the actual part-marking.

PIN CONFIGURATIONS^(1,2)

Symbol	Pin Name
A0 P1 – A11 P1	Address Lines – Port 1
A0 P2 – A11 P2	Address Lines – Port 2
A0 P3 – A11 P3	Address Lines – Port 3
A0 P4 – A11 P4	Address Lines – Port 4
I/O0 P1 – I/O7 P1	Data I/O – Port 1
I/O0 P2 – I/O7 P2	Data I/O – Port 2
I/O0 P3 – I/O7 P3	Data I/O – Port 3
I/O0 P4 – I/O7 P4	Data I/O – Port 4
R/W P1	Read/Write – Port 1
R/W P2	Read/Write – Port 2
R/W P3	Read/Write – Port 3
R/W P4	Read/Write – Port 4
GND	Ground
CE P1	Chip Enable – Port 1
CE P2	Chip Enable – Port 2
CE P3	Chip Enable – Port 3
CE P4	Chip Enable – Port 4
OE P1	Output Enable – Port 1
OE P2	Output Enable – Port 2
OE P3	Output Enable – Port 3
OE P4	Output Enable – Port 4
Vcc	Power

CAPACITANCE (TQFP Package Only)

 $(TA = +25^{\circ}C, f = 1.0MHz)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit		
CIN	Input Capacitance	VIN = 0V	9	pF		
Соит	Output Capacitance	Vout = 0V	10	pF		
NOTE: 2674 tbl 03						

1. This parameter is determined by device characterization but is not production tested.

2. 3dV references the interpolated capacitance when the input and the output signals switch from 0V to 3V or from 3V to 0V.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Ambient Temperature	GND	Vcc
Military	–55°C to +125°C	0V	5.0V ± 10%
Commercial	0°C to +70°C	0V	$5.0V \pm 10\%$

2674 tbl 04

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit	
Vcc	Supply Voltage	4.5	5.0	5.5	V	
GND	Supply Voltage	0	0	0	V	
Vін	Input High Voltage	2.2	_	6.0 ⁽²⁾	V	
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V	
NOTE: 2674 tbl 0						

NOTE:

2674 tbl 01

2674 tbl 02

1. VIL \geq -1.5V for pulse width less than 10ns.

2. VTERM must not exceed Vcc + 0.5V.

NOTES:

1. All Vcc pins must be connected to the power supply.

2. All GND pins must be connected to the ground supply.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Commercial	Military	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
Та	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	–55 to +125	-65 to +150	°C
Ιουτ	DC Output Current	50	50	mA

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM 1. RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VTERM must not exceed Vcc + 0.5V for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq Vcc + 0.5V.

DC ELECTRICAL CHARACTERISTICS OVER THE **OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE**(1, 5) (VCC = 5.0V + 10%)

							IDT70 COM'L	54X15 ONLY		054X20	
Symbol	Parameter	Condition	Versio	on			Typ. ⁽²⁾	Max.	Typ (2)	Max.	Un
ICC1	Operating Power Supply Current	CE = VI∟ Outputs Open	MIL.	S L			150 150	400 340	150 150	380 320	m/
	(All Ports Active)	$f = 0^{(4)}$	COM'L.	S L			150 150	340 290	150 150	320 270	
ICC2	Dynamic Operating Current	CE = VIL Outputs Open	MIL.	S L			240 210	420 360	230 200	410 350	m
	(All Ports Active)	$f = fMAX^{(5)}$	COM'L.	S L			260 230	390 345	240 210	370 325	
ISB	Standby Current (All Ports — TTL	$\overline{CE} = VIH$ f = fMAX ⁽⁵⁾	MIL.	S L			90 80	135 105	80 70	125 115	m
	Level Inputs)		COM'L. L	S			80 70	105 90	70 60	95 80	-
ISB1	Full Standby Current (All Ports — All	$\frac{\text{All Ports}}{\text{CE}} \ge \text{Vcc} - 0.2\text{V}$	MIL.	S L			1.5 .3	30 4.5	1.5 .3	30 4.5	m
	CMOS Level Inputs)	$ \begin{array}{l} \mbox{VIN} \geq \mbox{Vcc} - 0.2 \mbox{V} \mbox{ or } \\ \mbox{VIN} \leq 0.2 \mbox{V}, \mbox{ f} = 0^{(4)} \end{array} $	COM'L.	S L			1.5 .3	1.5 .3	1.5 .3	1.5 .3	-
					IDT705	4X25	IDT70	54X35	IDT7	054X45	
Symbol	Parameter	Condition	Versio	on	Typ. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Тур(2)	Max.	Un
ICC1	Operating Power Supply Current	CE = VIL Outputs Open	MIL.	S L	150 150	315 310	150 150	360 300	150 150	360 300	m
	(All Ports Active)	$f = 0^{(4)}$	COM'L.	S L	150 150	300 250	150 150	300 250	150 150	300 250	
ICC2	Dynamic Operating Current	CE = VIL Outputs Open	MIL.	S L	225 190	400 340	210 180	395 330	195 170	390 325	m
	ourient								405	330	
	(All Ports Active)	$f = fMAX^{(5)}$	COM'L.	S L	225 195	350 305	210 180	335 290	195 170	285	
ISB			COM'L. MIL.		_						m
ISB	(All Ports Active) Standby Current	$f = f_{MAX}^{(5)}$ $\overline{CE} = V_{IH}$		L S	195 45	305 115	180 40	290 110	170 35	285 105	m
ISB ISB1	(All Ports Active) Standby Current (All Ports — TTL	$f = f_{MAX}^{(5)}$ $\overline{CE} = V_{IH}$	MIL.	L S L S	195 45 40 60	305 115 85 85	180 40 35 40	290 110 80 75	170 35 30 35	285 105 75 70	m

"X" in part number indicates power rating (S or L).
Vcc = 5V, TA = +25°C and are not production tested.

3. f = 0 means no address or control lines change.

4. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRc, and using "AC Test Conditions" of input levels of GND to 3V.

5. For the case of one port, divide the appropriate current above by four.

DC ELECTRICAL CHARACTERISTICS OVER THE **OPERATING TEMPERATURE AND SUPPLY VOLTAGE** (Vcc = 5.0V ± 10%)

			IDT7054S		IDT70		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
LI	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, $VIN = 0V$ to Vcc	_	10		5	μA
llo	Output Leakage Current	$\overline{CE} = VIH$, VOUT = 0V to VCC	_	10		5	μA
Vol	Output Low Voltage	IOL = 4mA	_	0.4		0.4	V
Vон	Output High Voltage	Юн = -4mA	2.4		2.4		V

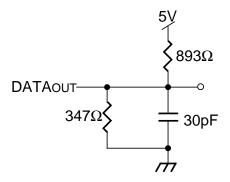
NOTES:

1. At Vcc≤2.0V input leakages are undefined.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	See Figure 1

2674 tbl 09



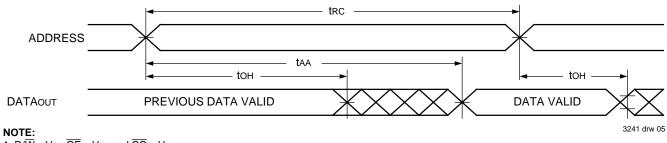


Figure 1. Output Test Load (for tLz, tHz, twz, tow)

3241 drw 04 Figure 2. Output Test Load (for tLz, tHz, twz, tow) *Including scope and jig

TIMING WAVEFORM OF READ CYCLE NO. 1, ANY PORT⁽¹⁾

1. $R/\overline{W} = VIH$, $\overline{OE} = VIL$, and $\overline{CC} = VIL$.

2674 tbl 06

AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE⁽³⁾

				-	54X15	IDT70	54X20	
Sumbal	Devementer				ONLY	Min	Max	-
Symbol READ C				Min.	Max.	Min.	Max.	Unit
tRC	Read Cycle Time			15	_	20	_	ns
taa	Address Access Time			_	15	_	20	ns
tACE	Chip Enable Access Time			-	15	—	20	ns
tAOE	Output Enable Access Time			—	8	—	10	ns
toн	Output Hold from Address Change			0	—	0	—	ns
tLZ	Output Low-Z Time ^(1, 2)			5	_	5	_	ns
tHZ	Output High-Z Time ^(1, 2)			_	12	—	12	ns
tPU	Chip Enable to Power Up Time ⁽²⁾			0	—	0	—	ns
tPD	Chip Disable to Power Down Time ⁽²⁾			_	15	—	20	ns
		IDT70	54X25	IDT70	54X35	IDT70	54X45	
Symbol		Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ C	YCLE							

25

0

5

0

25

25

15

15

25

35

0

5

_

0

35

35

25

15

35

45

0

5

0

_

45

45

30

20

45

		116	2
2	674	tbl	10

ns

ns

ns

ns

ns

ns

ns

ns

tPD NOTES:

tRC

tAA

tACE

tAOE

tон

t∟z

tHZ

tPU

1. Transition is measured ±200mV from low or high impedance voltage with the Output Test Load (Figures 1 and 2).

2. This parameter is guaranteed but is not production tested.

3. "X" in part number indicates power rating (S or L).

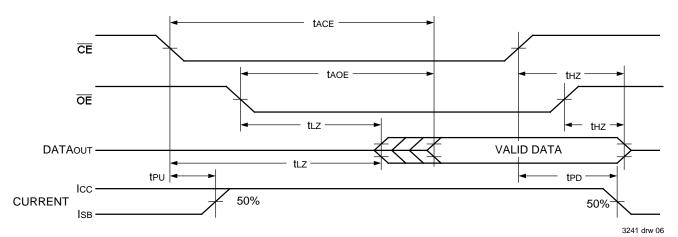
Read Cycle Time

Address Access Time

Chip Enable Access Time

Output Low-Z Time^(1, 2)

Output High-Z Time^(1, 2)


Output Enable Access Time

Output Hold from Address Change

Chip Enable to Power Up Time⁽²⁾

Chip Disable to Power Down Time⁽²⁾

TIMING WAVEFORM OF READ CYCLE NO. 2, ANY PORT^(1, 3)

NOTES:

1. $R/\overline{W} = V_{IH}$ for Read Cycles.

2. Addresses valid prior to or coincident with CE transition LOW.

AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE

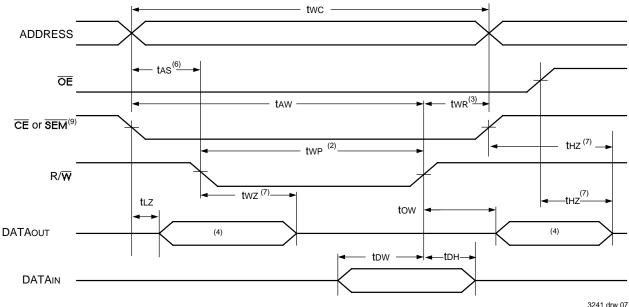
			054X15 ONLY	IDT70)54X20	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
WRITE C	YCLE					
twc	Write Cycle Time	15	—	20	_	ns
tew	Chip Enable to End-of-Write	12	_	15	_	ns
tAW	Address Valid to End-of-Write	12	—	15	_	ns
tas	Address Set-up Time	0	—	0	_	ns
twp	Write Pulse Width ⁽³⁾	12	_	15	_	ns
twR	Write Recovery Time	0	—	0	—	ns
tDW	Data Valid to End-of-Write	12	—	15	_	ns
tHZ	Output High-Z Time ^(1, 2)	-	12	—	15	ns
tDH	Data Hold Time	0	—	0	_	ns
twz	Write Enabled to Output in High-Z ^(1, 2)	_	12	_	12	ns
tow	Output Active from End-of-Write ^(1, 2)	0	—	0	_	ns
twdd	Write Pulse to Data Delay ⁽⁴⁾	—	25	—	35	ns
tDDD	Write Data Valid to Read Data Delay ⁽⁴⁾	—	20	_	30	ns

		IDT7054X25		IDT7054X35		IDT7054X45		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE C	YCLE							
twc	Write Cycle Time	25	25 — 35 — 45 —			ns		
tew	Chip Enable to End-of-Write	20	—	30	—	35	_	ns
taw	Address Valid to End-of-Write	20	_	30	_	35	_	ns
tas	Address Set-up Time		_	0	_	0	_	ns
tWP	Write Pulse Width ⁽³⁾	20	_	30	_	35		ns
twr	Write Recovery Time	0	_	0	_	0	_	ns
tDW	Data Valid to End-of-Write	15	—	20	—	20	—	ns
tHZ	Output High-Z Time ^(1, 2)	—	15	—	15	—	20	ns
tDH	Data Hold Time		_	0	_	0	_	ns
twz	Write Enabled to Output in High-Z ^(1, 2)		15	—	15	_	20	ns
tow	Output Active from End-of-Write ^(1, 2)	0	_	0	_	0	_	ns
twdd	Write Pulse to Data Delay ⁽⁴⁾	_	— 45 — 55 —			65	ns	
tDDD	Write Data Valid to Read Data Delay ⁽⁴⁾	—	35	_	45	—	55	ns

NOTES:

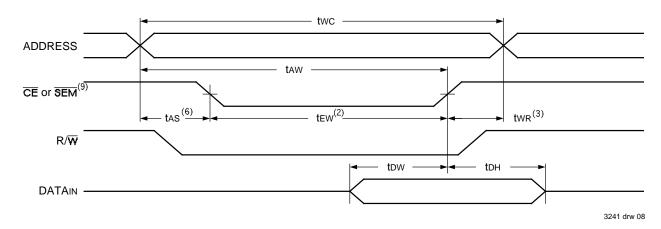
1. Transition is measured ±200mV from low or high impedance voltage with the Output Test Load (Figure 2).

2. This parameter is guaranteed but is not production tested.


3. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If OE is high during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp .Specified for OE at high (refer to "Timing Waveform of Write Cycle", Note 7).

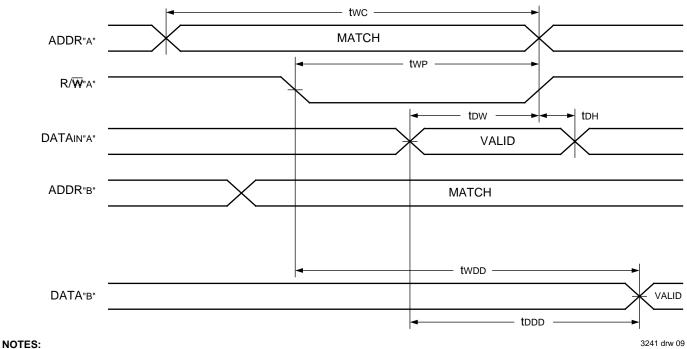
7. "X" in part number indicates power rating.

2674 tbl 11


Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read".
To ensure that the write cycle is inhibited on port "A" during contention from Port "B". Port "A" may be any of the four ports and Port "B" is any other port. To ensure that a write cycle is completed on port "A" after contention from Port "B". Port "A" may be any of the four ports and Port "B" is any other port. 6.

TIMING WAVEFORM OF WRITE CYCLE NO. 1, R/W CONTROLLED TIMING^(5,8)

3241 drw 07


TIMING WAVEFORM OF WRITE CYCLE NO. 2, CE CONTROLLED TIMING^(1, 5)

NOTES:

- 1. R/\overline{W} or \overline{CE} must be HIGH during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of a low \overline{CE} and a low R/\overline{W} .
- twR is measured from the earlier of CE or R/W going HIGH to the end of write cycle. 3.
- 4. During this period, the I/O pins are in the output state, and input signals must not be applied.
- 5. If the CE low transition occurs simultaneously with or after the RW low transition, the outputs remain in the high impedance state.
- 6. Timing depends on which enable signal is asserted last, \overline{CE} or R/\overline{W} .
- Transition is measured ±200mV from low or high impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed but 7. is not production tested.
- 8. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tbw) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
- 9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.

TIMING WAVEFORM OF WRITE WITH PORT-TO-PORT READ^(1, 2)

1. $\overline{OE} = V_{IL}$ for the reading ports.

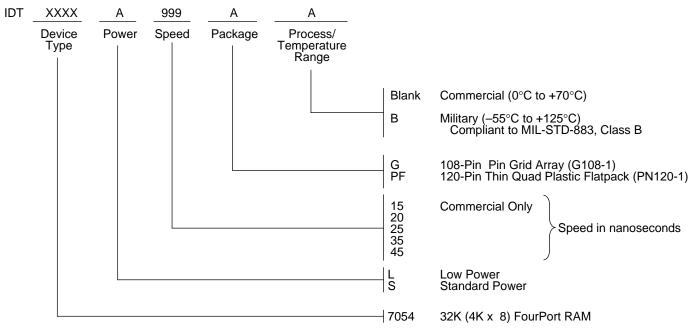
2. All timing is the same for left and right ports. Port "A" may be either of the four ports and Port "B" is any other port.

FUNCTIONAL DESCRIPTION

The IDT7054 provides four ports with separate control, address, and I/O pins that permit independent access for reads or writes to any location in memory. These devices have an automatic power down feature controlled by \overline{CE} . The \overline{CE} controls on-chip power down circuitry that permits the respective port to go into standby mode when not selected (\overline{CE} HIGH). When a port is enabled, access to the entire memory array is permitted. Each port has its own Output Enable control (\overline{OE}). In the read mode, the port's \overline{OE} turns on the output drivers when set LOW. READ/WRITE conditions are illustrated in the table below.

TABLE I – READ/WRITE CONTROL

Any Port ⁽¹⁾				
R/W	ĈĒ	ŌĒ	D0-7	Function
Х	H	Х	Z	Port Deselected: Power-Down
Х	Н	х	Z	$\overline{CE}P1 = \overline{CE}P2 = \overline{CE}P3 = \overline{CE}P4$ $=V_{IH}$ Power Down Mode, ISB or ISB1
L	L	Х	DATAIN	Data on port written into memory ⁽²⁾
Н	L	L	DATAOUT	Data in memory output on port
Х	Х	Н	Z	Outputs Disabled
NOTES:				2698 tbl 12


NOTES:

2698 tbl 12

1. "H" = VIH, "L" = VIL, "X" = Don't Care, "Z "= High Impedance

2. For valid write operation, no more than one port can write to the same address location at the same time.

ORDERING INFORMATION

3241 drw 10A