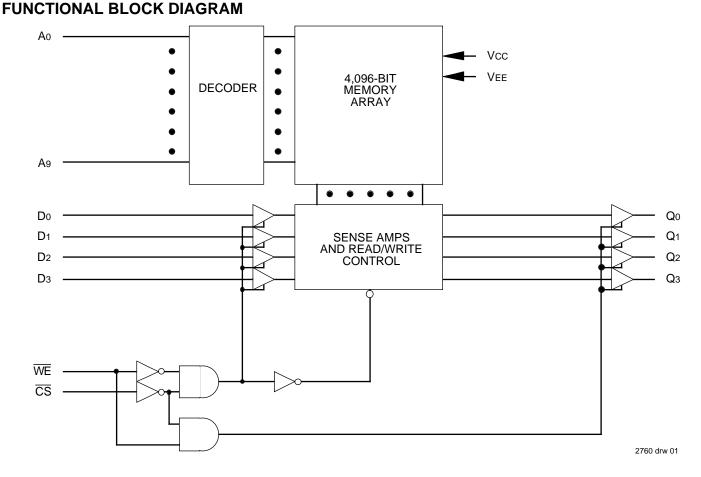


HIGH-SPEED BICMOS ECL STATIC RAM 4K (1K x 4-BIT) SRAM

PRELIMINARY IDT10474, IDT10A474 IDT100474, IDT100A474 IDT101474, IDT101A474

FEATURES:


- 1024-words x 4-bit organization
- Address access time: 2.7/3/3.5/4/4.5/5/7/8/10/15 ns
- Low power dissipation: 1000mW (typ.)
- Guaranteed Output Hold time
- Fully compatible with ECL logic levels
- · Separate data input and output
- Corner and Center power pin pinouts
- Standard through-hole and surface mount packages
- Guaranteed-performance die available for MCMs/hybrids
- MIL-STD-883, Class B product available

DESCRIPTION:

The IDT10474(10A474), IDT100474(100A474) and IDT101474(101A474) are 4,096-bit high-speed BiCMOS ECL static random access memories organized as 1Kx4, with separate data inputs and outputs. All I/Os are fully compatible with ECL levels.

These devices are part of a family of asynchronous fourbit-wide ECL SRAMs. This device is available in both the traditional corner-power pinout, and "revolutionary" centerpower pin configurations. Because they are manufactured in BiCMOS technology, power dissipation is greatly reduced over equivalent bipolar devices. Low power operation provides higher system reliability and makes possible the use of the plastic SOJ package for high-density surface mount assembly.

The fast access time and guaranteed Output Hold time allow greater margin for system timing variation. DataIN setup time specified with respect to the trailing edge of Write Pulse eases write timing allowing balanced Read and Write cycle times.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

COMMERCIAL TEMPERATURE RANGE

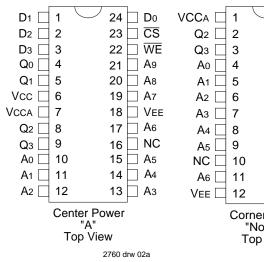
PIN CONFIGURATIONS

PIN DESCRIPTIONS

Symbol

Ao through A9

Do through D3

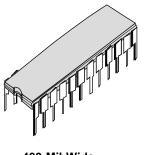

Q0 through Q3

WE

 \overline{CS}

Vee

Vcc



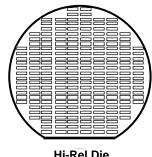
2	23	🗌 Q1
3	22	Q 0
4	21	D3
5	20	🗌 D2
6	19	🗌 D1
7	18	D 0
8	17	
9	16	WE
10	15	🗌 A9
11	14	A8
12	13	🗌 A7
Corner F "Non- Top Vi	A"	
	2760 (drw 02b

24

🗌 Vcc

PACKAGES

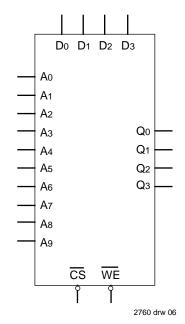
300-Mil-Wide


PLASTIC SOJ PACKAGE

SO24-4

400-Mil-Wide CERDIP PACKAGE D24-3

2760 drw 03


2760 drw 04

Hi-Rel Die For Hybrid and MCM Applications

2760 drw 05

LOGIC SYMBOL

CAPACITANCE (TA = +25°C, f = 1.0MHz)

		D	Р	SC		
Symbol	Parameter	Тур.	Max.	Тур.	Max.	Unit
CIN	Input Capacitance					
	Capacitance	4	—	3	_	pF
Соит	Output Capacitance	6	_	3	_	pF

Pin Name

Chip Select Input (Internal pull down)

More Negative Supply Voltage

Less Negative Supply Voltage

Address Inputs

Data Inputs

Data Outputs

Write Enable Input

2760 tbl 02

2760 tbl 03

2760 tbl 01

TRUTH TABLE⁽¹⁾

CS	WE	DataOUT	Function
н	Х	L	Deselected
L	Н	RAM Data	Read
L	L	L	Write

NOTE:

1. H = HIGH, L = LOW, X = Don't Care

2

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	g	Value	Unit					
Vterm	Terminal Voltag	•	+0.5 to -7.0	V					
Та	Operating Temperature	10K 100K 101K	0 to +75 0 to +85 0 to +75	°C					
TBIAS	Temperature U	nder Bias	-55 to +125	°C					
Тѕтс	Storage Temperatuure	Ceramic Plastic	-65 to +150 -55 to +125	°C					
Рт	Power Dissipati	on	1.5	W					
Ιουτ	DC Output Curr (Output High)	ent	-50	mA					
NOTE:									

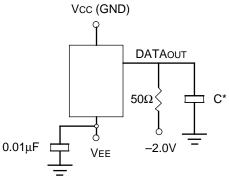
NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS (1)

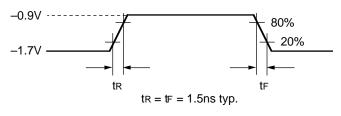
				10K		100K/1	01K		
Symbol	Parameter		Min.	Max.	ТА	Min.	Max.	Unit	
Vон	Output HIGH Vol	tage	-1000	-840	0°C	-1025	-880	mV	
	(VIN= VIH(Max) or	VIL(Min))	-960	-810	25°C				
	, , , ,	,	-900	-720	75°C				
Vol	Output LOW Volt	age	-1870	-1665	0°C	-1810	-1620	mV	
	(VIN= VIH(Max) or	VIL(Min))	-1850	-1650	25°C				
	•	,	-1830	-1625	75°C				
Vонс	Output Threshold	HIGH Voltage	-1020		0°C	-1035		mV	
	(VIN= VIH(Min) or ∖	/IL(Max))	-980		25°C				
			-920		75°C				
Volc	Output Threshold	LOW Voltage	—	-1645	0°C	_	-1610	mV	
	(VIN= VIH(Min) or ∖	/IL(Max))	—	-1630	25°C				
			—	-1605	75°C				
Viн	Input HIGH Volta	ge	-1145	-840	0°C	-1165	-880	mV	
	(Guaranteed Inpu	it Voltage	-1105	-810	25°C				
	High for All Inputs	5)	-1045	-720	75°C				
VIL	Input LOW Voltag	je	-1870	-1490	0°C	-1810	-1475	mV	
	(Guaranteed Inpu	it Voltage	-1850	-1475	25°C				
	Low for All Inputs)	-1830	-1450	75°C				
Ін	Input HIGH Curren	t							
	VIN= VIH(Max)	<u>S</u>	—	220		—	220	μA	
	Ot	hers	—	110	—	—	110	μΑ	
lı∟	Input LOW Current								
	VIN= VIL(Min) CS	<u> </u>	0.5	170	—	0.5	170	μA	
	Ot	hers	-50	90	—	-50	90	μA	
IEE	Supply Current		-210	—	_	-190 (100K)		mA	
						–210 (101K)			

NOTE:


1. RL = 50Ω to -2V, air flow exceeding 2 m/sec.

AC/DC ELECTRICAL OPERATING RANGES

I/O	VEE	Та
10K	$-5.2V\pm5\%$	0 to +75°C, air flow exceeding 2 m/sec
100K	$-4.5V\pm5\%$	0 to +85°C, air flow exceeding 2 m/sec
101K	–4.75V to –5.46V	0 to +75°C, air flow exceeding 2 m/sec
		0700 #1 05


2760 tbl 05

AC TEST LOAD CONDITION

*Includes probe and jig capacitance. C < 5pF (2.7,3.0, 3.5nS speed grades) $_{2760 \text{ drw } 07}$ C < 30pF (all other speed grades)

AC TEST INPUT PULSE

Note: All timing measurements are referenced to 50% input levels.

2760 drw 08

RISE/FALL TIME

Symbol	Parameter	Min.	Тур.	Max.	Unit
tR	Output Rise Time		1.5		ns
tF	Output Fall Time		1.5		ns

²⁷⁶⁰ tbl 06

FUNCTIONAL DESCRIPTION

The IDT10474(10A474), IDT100474(100A474), and IDT101474(101A474) BiCEMOS ECL static RAMs provide high speed with low power dissipation typical of BiCMOS ECL. These devices are available in both the traditional corner-power pinout and the "revolutionary" center-power pinout for reduced noise and improved system performance.

READ TIMING

The read timing on these asynchronous devices is straightforward. DataOUT is held LOW until the device is selected by Chip Select (<u>CS</u>). The Address (ADDR) settles and data appears on the output after time tAA. Note that DataOUT is held for a short time (tOH) after the address begins to change for the next access, then ambiguous data is on the bus until a new time tAA.

WRITE TIMING

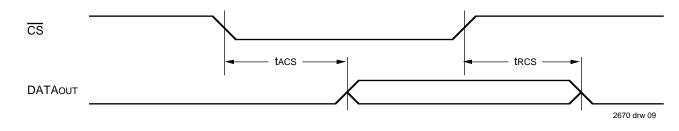
To write data to the device, a Write Pulse need be formed on the Write Enable input (<u>WE</u>) to control the write to the SRAM array. While <u>CS</u> and ADDR must be set-up when <u>WE</u> goes low, DataIN can settle after the falling edge of <u>WE</u>, giving the data path extra margin. Data is written to the memory cell at the end of the Write Pulse, and addresses and Chip Select must be held after the rising edge of the Write Pulse to ensure satisfactory completion of the cycle.

DataOUT is disabled (held LOW) during the Write Cycle. If <u>CS</u> is held LOW (active) and addresses remain unchanged, the Data OUT pins will output the written data after "Write Recovery time" (twR).

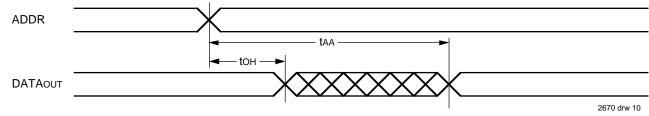
Because of the very short Write Pulse requirement, these devices can be cycled as quickly for Writes as for Reads.

2760 tbl 07

AC ELECTRICAL CHARACTERISTICS (Over the AC Operating Range)


		S	2.7	S	3	S	3.5	S	64	S4	.5	S	5	S7,8,	10,15	
Symbol	Parameter ⁽¹⁾	Min.	Max.	Min.	Max.	Unit										
Read Cy	Read Cycle															
tACS	Chip Select Access Time	_	2.0		2.0		2.5		2.5		2.5		3.0		3.5	ns
tRCS	Chip Select Recovery Time	_	2.0		2.0		2.5		2.5		2.5		3.0		3.5	ns
tAA	Address Access Time	_	2.7	_	3.0	_	3.5		4.0		4.5		5.0		7.0	ns
tон	Data Hold from Address Change	1.0	_	1.0	—	1.0	_	1.0	_	1.0	_	1.0	_	1.0	-	ns

NOTE:


1. Input and Output reference level is 50% point of waveform.

2. Output load capacitance, C < 5pF (2.7, 3.0, 3.5ns speed grades only), see "AC Test Load Condition" on previous page.

READ CYCLE GATED BY CHIP SELECT (1, 2)

READ CYCLE GATED BY ADDRESS (1, 3)

NOTE:

1. WE is HIGH for read cycle.

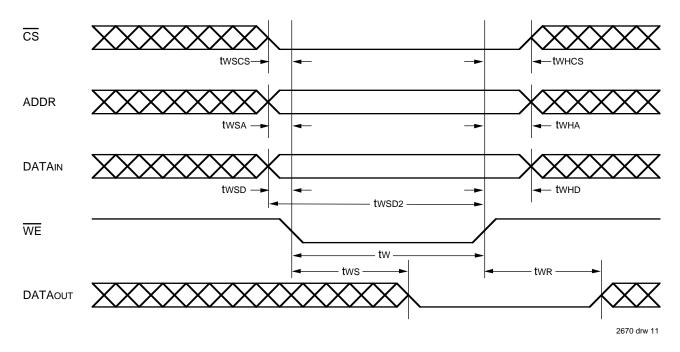
2. Address valid prior to or minimum tAA-tACS before CS active.

3. <u>CS</u> active prior to or minimum tAA-tACS after address valid.

AC ELECTRICAL CHARACTERISTICS (Over the AC Operating Range)

		S	2.7	S3.0		S3.5		S4		S4.5		S5		S7,8,10,15		
Symbol	Parameter ⁽¹⁾	Min.	Max.	Min.	Max.	Unit										
Write Cy	Write Cycle															
tw	Write Pulse Width (twsa = minimum)	2.5		2.5	—	3.0		3.0	_	3.5	—	4.0		6.0	_	ns
twsp	Data Set-up Time	0	_	0	_	0	_	0	—	0	_	0	_	0	—	ns
twsp2 ⁽²⁾	Data Set-up Time to WE HIGH	2.0	_	2.0	_	2.0	_	2.0	_	2.0	_	3.0	_	5.0	_	ns
tWSA	Address Set-up Time (tw = minimum)	0	_	0	_	0	_	0	—	0	_	0	_	0	—	ns
twscs	Chip Select Set-up Time	0	_	0	_	0	_	0	_	0	_	0	_	0	_	ns
twнD	Data Hold Time	1.0	_	1.0	_	1.0	_	1.0	_	1.0	_	1.0	_	1.0	_	ns
twнa	Address Hold Time	1.0	_	1.0	_	1.0	_	1.0	_	1.0	_	1.0	_	1.0	_	ns
twncs	Chip Select Hold Time	1.0		1.0	—	1.0		1.0	—	1.0	—	1.0		1.0	—	ns
tws	Write Disable Time		2.7	_	3.0	_	3.0	_	3.0	_	3.0	_	3.0	_	5.0	ns
twr ⁽³⁾	Write Recovery Time	_	2.7	—	3.0	_	3.0	—	3.0	_	3.0	_	3.0	_	5.0	ns

NOTE:


1. Input and Output reference level is 50% point of waveform.

2760 tbl 08

 twsb is specified with respect to the falling edge of <u>WE</u> for compatibility with bipolar part specifications, but this device actually only requires twsb2 with respect to rising edge of <u>WE</u>.

3. twR is defined as the time to reflect the newly written data on the Data Outputs (Q0 to Q3) when no new Address Transition occurs.

WRITE CYCLE TIMING DIAGRAM

ORDERING INFORMATION nnnnn aa nn а а IDT Device Type Architecture Speed Package Process/ Temp. Range Blank Commercial Military (-55°C to +125°C) B(1) Compliant to MIL-STD-883, Class B DF CERDIP Hi-Rel Die for MCMs and/or Hybrids U(1) Plastic SOJ Υ 2.7 3 3.5 4 4.5 Speed in Nanoseconds 5 7 8 10 15 S Standard Architecture 10474 4K (1K x 4-bits) BiCMOS ECL-10K Corner-Power Pin Static RAM 4K (1K x 4-bits) BiCMOS ECL-10K 10A474 Center-Power Pin Static RAM 4K (1K x 4-bits) BiCMOS ECL-100K 100474 Corner-Power Pin Static RAM 100A474 4K (1K x 4-bits) BiCMOS ECL-100K Center-Power Pin Static RAM 4K (1K x 4-bits) BiCMOS ECL-101K 101474 Corner-Power Pin Static RAM 101A474 4K (1K x 4-bits) BiCMOS ECL-101K Center-Power Pin Static RAM

NOTE:

1. Please contact your IDT Sales Representative for more information on specifications and availability of Military and Die products.

2760 drw 12

Integrated Device Technology, Inc. reserves the right to make changes to the specifications in this data sheet in order to improve design or performance and to supply the best possible product.

Integrated Device Technology, Inc.

2975 Stender Way, Santa Clara, CA 95054-3090

Telephone: (408) 727-6116

FAX 408-492-8674