

SELF-TIMED BICMOS ECL STATIC RAM 64K (16K x 4-BIT) STRAM

IDT10496RL IDT100496RL IDT101496RL

FEATURES:

- 16,384-words x 4-bit organization
- Self-Timed, with registers on inputs and latches on outputs
- Balanced Read/Write cycle time: 10/12/15 ns
- Access time: 10/12/15 ns (max.)
- · Fully compatible with ECL logic levels
- Through-hole DIP and surface-mount packages

DESCRIPTION:

The IDT10496RL, IDT100496RL and IDT101496RL are 65,536-bit high-speed BiCEMOSTM ECL static random access memories organized as $16K \times 4$, with inputs and outputs fully compatible with ECL levels. Clocked registers on inputs

FUNCTIONAL BLOCK DIAGRAM

and latches on outputs, and the self-timed write operation, provide enhanced system performance over conventional RAMs, providing easier design and improved system level cycle times.

Inputs are captured by the leading edge of an externally supplied differential clock. The small input valid window required means more margin for system skews. Logic-to-memory propagation delay is included in device cycle time calculation, allowing this device to deliver better system performance than asynchronous SRAMs and glue logic.

Write timing is controlled internally based on the clock. Write Enable has no special requirements. The device allows balanced read and write cycle times, and reads and writes can be inserted in any order.

BiCEMOS is a trademark of Integrated Device Technology, Inc.

COMMERCIAL TEMPERATURE RANGE

PIN CONFIGURATION

TOP VIEW

PIN DESCRIPTION

Symbol	Pin Name
A0 through A13	Address Inputs
Do through D3	Data Inputs
Q0 through Q3	Data Outputs
WE	Write Enable Input
CS	Chip Select Input (Internal pull down)
CLK, CLK	Differential Clock Inputs
Vвв	Reference Voltage Output (≈1.32V)
VEE	More Negative Supply Voltage
Vcc	Less Negative Supply Voltage
NC	No Connect - not internally bonded

CAPACITANCE (TA=+25°C, f=1.0MHz)

		D	DIP		SOJ		
Symbol	Parameter	Тур.	Max.	Тур.	Max.	Unit	
CINCLK	Input Capa <u>cita</u> nce CLK/CLK	6	-	3	-	pF	
Cin	Input Capacitance except CLK/CLK	4	-	3	-	pF	
Соит	Output Capacitance	6	-	3	-	pF	

TRUTH TABLE⁽¹⁾

CS	ΨE	CLK	Dataout ⁽²⁾	Function
Н	Х	t	L	Deselected
L	Н	t	RAM Data	Read
L	L	t	WRITE Data	Write

NOTES:

1. H=High, L=Low, X=Don't Care

2. DATAOUT initiated by falling edge of CLK.

400-Mil-Wde CERAMIC PACKAGE C32-2 2771 drw 03

300-Mil-Wide PLASTIC SOJ PACKAGE SO32-2 2771 drw 04

Hi-Rel Die For Hybrid and MCM Applications

2771 drw 05

LOGIC SYMBOL

2771 drw 05

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	g	Value	Unit
VTERM	Terminal Voltag	je o GND	+0.5 to -7.0	V
Та	Operating Temperature	10K 100K 101K	0 to +75 0 to +85 0 to +75	°C
TBIAS	Temperature U	nder Bias	-55 to +125	°C
TSTG	Storage Temperatuure	torage Ceramic emperatuure Plastic		°C
Рт	Power Dissipation		1.5	W
Ιουτ	DC Output Current (Output High)		-50	mA
NOTE:				2760 tbl 04

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS (1)

				10K		100K/1	100K/101K	
Symbol	Parameter		Min.	Max.	ТА	Min.	Max.	Unit
Vон	Output HIGH	l Voltage	-1000	-840	0°C	-1025	-880	mV
	(VIN= VIH(Max	k) or VIL(Min))	-960	-810	25°C			
			-900	-720	75°C			
Vol	Output LOW	Voltage	-1870	-1665	0°C	-1810	-1620	mV
	(VIN= VIH(Max	k) or VIL(Min))	-1850	-1650	25°C			
			-1830	-1625	75°C			
Vонс	Output Three	shold HIGH Voltage	-1020		0°C	-1035		mV
	(VIN= VIH(Min) or VIL(Max))	-980		25°C			
			-920		75°C			
Volc	Output Three	shold LOW Voltage	—	-1645	0°C	—	-1610	mV
	(VIN= VIH(Min) or VIL(Max))	—	-1630	25°C			
			—	-1605	75°C			
Viн	Input HIGH \	/oltage	-1145	-840	0°C	-1165	-880	mV
	(Guaranteed	Input Voltage	-1105	-810	25°C			
	High for All I	nputs)	-1045	-720	75°C			
VIL	Input LOW V	'oltage	-1870	-1490	0°C	-1810	-1475	mV
	(Guaranteed	Input Voltage	-1850	-1475	25°C			
	Low for All Ir	iputs)	-1830	-1450	75°C			
Ін	Input HIGH Cu	urrent						
	VIN= VIH(Max)	<u>CS</u>	—	220	—	—	220	μA
		Others	—	110	—	—	110	μA
lı∟	Input LOW Cu	rrent						
	VIN= VIL(Min)	<u>CS</u>	0.5	170	—	0.5	170	μA
		Others	-50	90	—	-50	90	μA
IEE	Supply Curre	ent	-260	—	—	-240 (100K)	_	mA
						-260 (101K)	—	

NOTE:

1. RL = 50Ω to -2V, air flow exceeding 2 m/sec.

AC/DC ELECTRICAL OPERATING RANGES

I/O	VEE	Та
10K	$\textbf{-5.2V}\pm5\%$	0 to +75°C, air flow exceeding 2 m/sec
100K	$\textbf{-4.5V} \pm 5\%$	0 to +85°C, air flow exceeding 2 m/sec
101K	-4.75V to -5.46V	0 to +75°C, air flow exceeding 2 m/sec

2760 tbl 05

AC TEST LOAD CONDITION

AC TEST INPUT PULSE

Note: All timing measurements are referenced to 50% input levels.

2771 drw 08

RISE/FALL TIME

Symbol	Parameter	Min.	Тур.	Max.	Unit
tR	Output Rise Time		1.5		ns
tF	Output Fall Time		1.5	1	ns

2771 tbl 06

FUNCTIONAL DESCRIPTION

The IDT10496RL, IDT100496RL and IDT101496RL Self-Timed BiCMOS ECL static RAMs (STRAM) provide high speed with low power dissipation typical of BiCMOS ECL. On-chip logic additionally helps improve system performance. The ECL-101K meets electrical specifications that combine the ECL-100K temperature and voltage compensated output levels with the high-speed of ECL-10K VEE compatibility (-5.2V).

As can be seen in the Functional Block Diagram on the title page, this device contains clocked input registers to sample and hold addresses, input data, and control status. Inputs are sampled on the rising edge of the clock (CLK) input (falling edge of <u>CLK</u>). In the case of a write cycle, the memory cell is written during the clock-high time, and write data conducted to

the outputs. Output data flows out the output latch and is held into the next cycle.

READ TIMING

In a typical read cycle, the read address is captured by the rising edge of clock, as at **1** below. Then, when clock goes low, the read data for the read address clocked in at **1** is gated through the output latch to the output pins. There is a short delay from falling clock to output ready, called tDR (see Read Cycle Timing). If the clock-high time (tWH) is shorter than the inherent access-time of the cell, output is guaranteed valid after the specified tACC. But if tWH is longer than the cell access-time, output data will be valid tDR after clock goes low. Thus, the time it takes from clock-to-output for any given

FUNCTIONAL DESCRIPTION TIMING EXAMPLE

address (the latency, or tACC) is

tACC = tACC or (tWH + tDR),

whichever is larger.

The output latch takes some time to change state for the next cycle, but this time is very short. Therefore, data hold time from clock low (tDH) is specified as zero minimum hold time.

DESELECT TIMING

Because the outputs are latched, they will continue to drive the output pins until a disable state is clocked through the device. The deselected state is achieved by de-asserting chip select (<u>CS</u> high) at rising edge of clock. This case occurs at @ below. Outputs then attain the disable state (low) tACC later. Status of other inputs do not effect the disabling of the device when chip select is de-asserted with the proper relation to clock.

WRITE TIMING

Write cycles are identical to read cycles, except that write enable and write data need also be supplied, with the appropriate setup and hold timing. The device has on-chip timing that handles all aspects of writing data into the addressed RAM cell without the need for external write-pulse generation. The timing logic uses the clock-high time as the write pulse, and thus determines the minimum clock-high time, tWH.

In addition to writing to the RAM cell, the write data is fed to the output register by a multiplexer, so that write data is available on the output pins in the appropriate time slot (i.e. after tWH + tDR). This function is sometimes called "Transparent Write," and is useful for write-through cache applications. Thus the input data sampled at 3 is available on the output at the end of the cycle.

There are no restrictions on the order of read cycles and write cycles.

AC ELECTRICAL CHARACTERISTICS (Over the AC Operating Range)

		Test	10496RL1010496RL12100496RL10100496RL12101496RL10101496RL12		10490 10049 10149				
Symbol	Parameter ⁽¹⁾	Condition	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle)			··					
tCYC	Cycle Time	_	10	_	12	_	15	_	ns
tACC ⁽²⁾	Access Time from Clock High	-	_	10	-	12	-	15	ns
twL	Clock Low Pulse Width	_	5	-	5	-	6	-	ns
twн	Clock High Pulse Width	_	5	-	5	-	6	-	ns
tscs	Setup Time for Chip Select	_	1	-	1	-	1	-	ns
tSA	Setup Time for Address	_	1	-	1	-	1	_	ns
tHCS	Hold Time for Chip Select	_	2.5	_	2.5	_	2.5	_	ns
tHA	Hold Time for Address	_	2.5	-	2.5	-	2.5	-	ns
tDH	Data Hold from Clock Low	_	2	_	2	_	2	_	ns
tDR	Data Ready from Clock Low	_	2	5	2	5	2	5	ns

NOTES:

1. Input and Output reference level is 50% point of waveform.

2. Access time is the larger of tACC or tWH + tDR.

READ CYCLE TIMING DIAGRAM

AC ELECTRICAL CHARACTERISTICS (Over the AC Operating Range)

		Test	10496RL10 10496RL12 100496RL10 100496RL12 101496RL10 100496RL12 101496RL10 101496RL12		10496RL10 10496RL12 10496RL15 100496RL10 100496RL12 100496RL15 101496RL10 101496RL12 101496RL15		6RL15 6RL15 6RL15		
Symbol	Parameter ⁽¹⁾	Condition	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cycle	(2)								
tSWE	Setup Time for Write Enable	-	1	-	1	_	1	-	ns
tSD	Setup Time for Data In	-	1	-	1	-	1	Ι	ns
tHWE	Hold Time for Write Enable	-	2.5	-	2.5	-	2.5	-	ns
tHD	Hold Time for Data In	-	2.5	_	2.5	_	2.5	_	ns
NOTES	÷								2771 tbl 12

NOTES:

1. Input and Output reference level is 50% point of waveform.

2. All Setup, Hold, and Access timing are the same as the Read Cycle with the addition of above requirements. Write Data appears on output pins after falling edge of clock.

WRITE CYCLE TIMING DIAGRAM

CLOCK INPUT

The clock input circuit has been designed to accomodate both single-ended and differential mode operation. Differential mode exhibits better common-mode noise rejection and is obtained by driving both true and complement clock lines with a differential driver, as shown in Figure (a). Single-ended operation is achieved as either falling-edge-active or rising-edge-active, as shown in Figures (b) and (c), respectively. VBB is designed to drive clock input only and is not intended to be used for any other purpose. CLK CLK CLK <u>CI K</u> <u>CI K</u> <u>CI K</u> REF. VOLTAGE REF. VOLTAGE REF. VOLTAGE Vbb VBB VBB GENERATOR GENERATOR GENERATOR (a) Differential Mode (b) Falling-Edge-Active (c) Rising-Edge-Active Single-Ended Mode Single-Ended Mode 2771 drw 11 nnnnn aa nn а а IDT Package Process/ Device Type Architecture Speed Temp. Range

NOTE:

1. Please contact your IDT Sales Representative for more information on specifications and availability of Die products.

2771 drw 12