

HIGH-SPEED BICMOS ECL STATIC RAM 256K (64K x 4-BIT) SRAM

IDT10504 IDT100504 IDT101504

FEATURES:

- 65,536-words x 4-bit organization
- Address access time: 7/8/10/12/15 ns
- Low power dissipation: 1000mW (typ.)
- Guaranteed Output Hold time
- Fully compatible with ECL logic levels
- Separate data input and output
- Standard through-hole and surface mount packages
- Guaranteed-performance die available for MCMs/hybrids

DESCRIPTION:

The IDT10504, IDT100504 and IDT101504 are 262,144-bit high-speed BiCEMOS $^{\text{TM}}$ ECL static random access memories organized as 64Kx4, with separate data inputs and outputs. All I/Os are fully compatible with ECL levels.

These devices are part of a family of asynchronous fourbit-wide ECL SRAMs. The devices have been configured to follow the standard ECL SRAM JEDEC pinout. Because they are manufactured in BiCEMOS™ technology, power dissipation is greatly reduced over equivalent bipolar devices. Low power operation provides higher system reliability and makes possible the use of the plastic SOJ package for high-density surface mount assembly.

The fast access time and guaranteed Output Hold time allow greater margin for system timing variation. DataIN setup time specified with respect to the trailing edge of Write Pulse eases write timing allowing balanced Read and Write cycle times.

FUNCTIONAL BLOCK DIAGRAM Αo 65,536-BIT Vcc **DECODER** MÉMORY **ARRAY** VEE A15 • • Q_0 D₀ Q1 D1 SENSE AMPS AND READ/WRITE Q2 D₂ CONTROL Qз Dз WE CS 2780 drw 01

BiCEMOS is a trademark of Integrated Device Technology, Inc.

PIN CONFIGURATION

NC 🗆	1	32	□cs
D0 _	2	31	□ WE
D1	3	30	□NC
D ₂	4	29	NC
D3	5	28	A15
Q 0	6	27	☐ A14
Q1 [7	26	A13
Vcc 🗆	8	25	A12
Vcc _	9	24	UVEE
Q 2	10	23	□ A11
Q 3	11	22	☐ A 10
A0 _	12	21	☐ A 9
A1 [13	20	☐ A8
A2 [14	19	□ A7
Аз 🗀	15	18	☐ A6
A4	16	17	☐ A 5
			J

2780 drw 02

Top View

PIN DESCRIPTIONS

Symbol	Pin Name
Ao through A15	Address Inputs
Do through D3	Data Inputs
Qo through Q3	Data Outputs
<u>WE</u>	Write Enable Input
<u>CS</u>	Chip Select Input (Internal pull down)
VEE	More Negative Supply Voltage
Vcc	Less Negative Supply Voltage

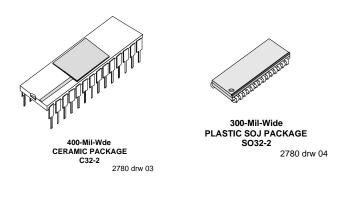
2780 tbl 01

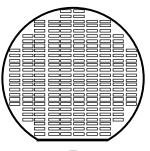
CAPACITANCE (TA = +25°C, f = 1.0MHz)

		DI	Р	SC		
Symbol	Parameter	Тур.	Max.	Тур.	Max.	Unit
CIN	Input					
	Capacitance	4	_	3	_	pF
Соит	Output					
	Capacitance	6	_	3	_	pF

2780 tbl 02

2780 tbl 03

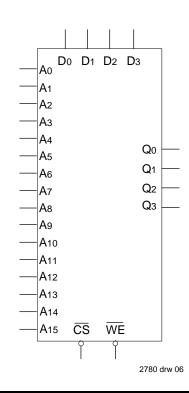

TRUTH TABLE⁽¹⁾


<u>CS</u>	<u>WE</u>	DataOUT	Function
Н	Х	L	Deselected
L	Н	RAM Data	Read
ı	i	İ	W/rite

NOTE:

1. H=High, L=Low, X=Don't Care

PACKAGES



Hi-Rel Die For Hybrid and MCM Applications

2780 drw 05

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	g	Value	Unit
VTERM	Terminal Voltag	•	+0.5 to -7.0	V
ТА	Operating Temperature			°C
TBIAS	Temperature U	nder Bias	-55 to +125	°C
Tstg	Storage Ceramic Temperatuure Plastic		-65 to +150 -55 to +125	°C
Рт	Power Dissipation		1.5	W
Іоит	DC Output Current (Output High)		-50	mA

NOTE:

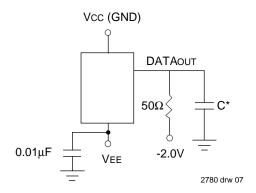
2780 tbl 04

AC/DC ELECTRICAL OPERATING RANGES

I/O	VEE	TA
10K	-5.2V ± 5%	0 to +75°C, air flow exceeding 2 m/sec
100K	-4.5V ± 5%	0 to +85°C, air flow exceeding 2 m/sec
101K	-4.75V to -5.46V	0 to +75°C, air flow exceeding 2 m/sec

2780 tbl 05

DC ELECTRICAL CHARACTERISTICS (1)

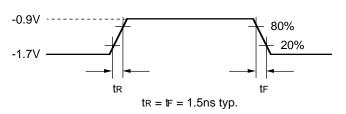

				10K		100K/1	01K		
Symbol	Parameter		Min.	Max.	TA	Min.	Max.	Unit	
Vон	Output HIGH	l Voltage	-1000	-840	0°C	-1025	-880	mV	
	(VIN= VIH(Max	-	-960	-810	25°C				
	,	,	-900	-720	75°C				
Vol	Output LOW	Voltage	-1870	-1665	0°C	-1810	-1620	mV	
	(VIN= VIH(Max	x) or VIL(Min))	-1850	-1650	25°C				
		•	-1830	-1625	75°C				
Vонс	Output Thres	shold HIGH Voltage	-1020	_	0°C	-1035	_	mV	
	(VIN= VIH(Min	or VIL(Max))	-980	_	25°C				
			-920		75°C				
Volc	Output Thres	shold LOW Voltage	_	-1645	0°C	_	-1610	mV	
	(VIN= VIH(Min) or VIL(Max))	_	-1630	25°C				
				-1605	75°C				
VIH	Input HIGH \	/oltage	-1145	-840	0°C	-1165	-880	mV	
	(Guaranteed	Input Voltage	-1105	-810	25°C				
	High for All I	nputs)	-1045	-720	75°C				
VIL	Input LOW V	/oltage	-1870	-1490	0°C	-1810	-1475	mV	
	(Guaranteed	Input Voltage	-1850	-1475	25°C				
	Low for All Ir	nputs)	-1830	-1450	75°C				
Іін	Input HIGH Co	urrent							
	VIN= VIH(Max)	<u>CS</u>		220		_	220	μΑ	
		Others	_	110	_		110	μΑ	
lıL	Input LOW Cu	ırrent							
	VIN= VIL(Min)	<u>CS</u>	0.5	170	_	0.5	170	μΑ	
		Others	-50	90	-	-50	90	μΑ	
lee	Supply Curre	ent	-220	_	_	-200 (100K)	_	mA	
						-220 (101K)	_		

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{1.} RL = 50Ω to -2V, air flow exceeding 2 m/sec.

AC TEST LOAD CONDITION


*Includes probe and jig capacitance. C < 5pF (7ns speed grade) C < 30pF (all other speed grades)

RISE/FALL TIME

Symbol	Parameter	Min.	Тур.	Max.	Unit
tR	Output Rise Time	_	1.5	_	ns
tF	Output Fall Time	_	1.5	_	ns

2780 tbl 06

AC TEST INPUT PULSE

Note: All timing measurements are referenced to 50% input levels.

2780 drw 08

FUNCTIONAL DESCRIPTION

The IDT10504, IDT100504, and IDT101504 BiCEMOS ECL static RAMs provide high speed with low power dissipation typical of BiCMOS ECL. These devices follow the conventional center power pinout and functionality for 64Kx4 ECL SRAMs.

READ TIMING

The read timing on these asynchronous devices is straightforward. DataOUT is held low until the device is selected by Chip Select (<u>CS</u>). The Address (ADDR) settles and data appears on the output after time tAA. Note that DataOUT is held for a short time (tOH) after the address begins to change for the next access, then ambiguous data is on the bus until a new time tAA.

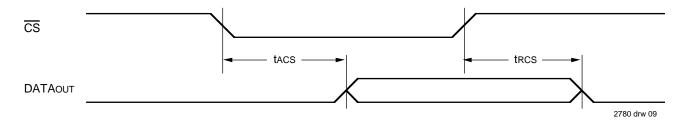
WRITE TIMING

To write data to the device, a Write Pulse need be formed on the Write Enable input (<u>WE</u>) to control the write to the SRAM array. While <u>CS</u> and ADDR must be set-up when <u>WE</u> goes low, DataIN can settle after the falling edge of <u>WE</u>, giving the data path extra margin. Data is written to the memory cell at the end of the Write Pulse, and addresses and Chip Select must be held after the rising edge of the Write Pulse to ensure satisfactory completion of the cycle.

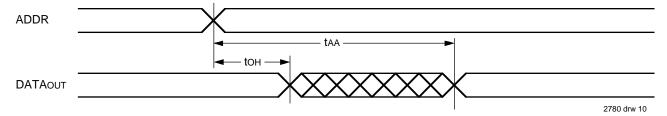
DataOUT is disabled (held low) during the Write Cycle. If <u>CS</u> is held low (active) and addresses remain unchanged, the Data OUT pins will output the written data after "Write Recovery time" (twr).

Because of the very short Write Pulse requirement, these devices can be cycled as quickly for Writes as for Reads.

AC ELECTRICAL CHARACTERISTICS (Over the AC Operating Range)


		S7 S8		S10		S12, 15				
Symbol	Parameter ⁽¹⁾	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	cle									
tacs	Chip Select Access Time		3	l	3	_	4	_	4	ns
trcs	Chip Select Recovery Time	_	3	1	3	_	4	_	4	ns
tAA	Address Access Time	_	7	-	8	_	10	_	12	ns
tон	Data Hold from Address Change	3		3	_	3	_	3	_	ns

NOTE:


2780 tbl 07

- 1. Input and Output reference level is 50% point of waveform.
- 2. Output load capacitance, C < 5pF (7ns speed grade only), see "AC Load Test Condition" on previous page.

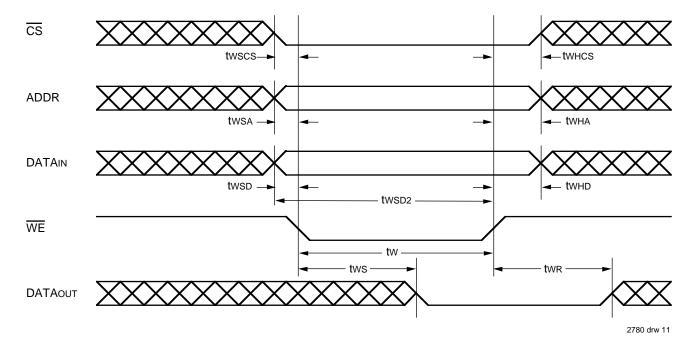
READ CYCLE GATED BY CHIP SELECT (1, 2)

READ CYCLE GATED BY ADDRESS (1, 3)

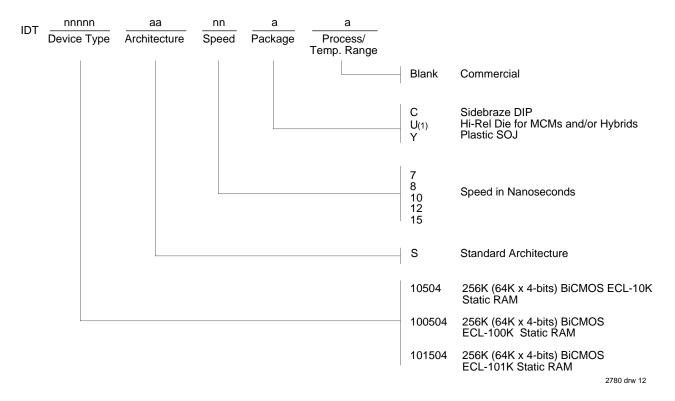
NOTE:

- 1. WE is high for read cycle.
- 2. Address valid prior to or minimum of tAA-tACS before CS active.
- 3. CS active prior to or minimum tAA-tACS after address valid.

AC ELECTRICAL CHARACTERISTICS (Over the AC Operating Range)


		S7		S8		S10		S12, 15		
Symbol	Parameter ⁽¹⁾	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cy	cle									
tw	Write Pulse Width (twsa = minimum)	5	_	6	1	8	_	8	_	ns
twsp	Data Set-up Time	0	_	0	_	0	_	0	_	ns
twsp2 ⁽²⁾	Data Set-up Time to WE High	5	_	5		5	_	5	_	ns
twsa	Address Set-up Time (tw = minimum)	0	_	0		0	_	0	_	ns
twscs	Chip Select Set-up Time	0	_	0	_	0	_	0	_	ns
twhD	Data Hold Time	2	_	2	_	2	_	2	_	ns
twha	Address Hold Time	2	_	2	_	2	_	2	_	ns
twncs	Chip Select Hold Time	2	_	2	-	2	_	2	_	ns
tws	Write Disable Time	_	5		5	_	5	_	5	ns
twr ⁽³⁾	Write Recovery Time	_	5	_	5	_	5		5	ns

NOTE:


2780 tbl 08

- 1. Input and Output reference level is 50% point of waveform.
- 2. twsp is specified with respect to the falling edge of <u>WE</u> for compatibility with bipolar part specifications, but this device actually only requires twsp2 with respect to rising edge of <u>WE</u>.
- 3. twn is defined as the time to reflect the newly written data on the Data Outputs (Q0 to Q3) when no new Address Transition occurs.

WRITE CYCLE TIMING DIAGRAM

ORDERING INFORMATION

NOTE:

1. Please contact your IDT Sales Representative for more information on specifications and availability of Die products.

Integrated Device Technology, Inc. reserves the right to make changes to the specifications in this data sheet in order to improve design or performance and to supply the best possible product.

Integrated Device Technology, Inc.

2975 Stender Way, Santa Clara, CA 95054-3090

Telephone: (408) 727-6116

FAX 408-492-8674