

HIGH-SPEED BICMOS ECL STATIC RAM 16K (4K x 4-BIT) SRAM

PRELIMINARY IDT10484, IDT10A484 IDT100484, IDT100A484 IDT101484, IDT101A484

FEATURES:

- 4096-words x 4-bit organization
- Address access time: 4/4.5/5/7/8/10/15 ns
- Low power dissipation: 900mW (typ.)
- Guaranteed Output Hold time
- Fully compatible with ECL logic levels
- Separate data input and output
- Corner and Center power pin pinouts
- Standard through-hole and surface mount packages
- Guaranteed-performance die available for MCMs/hybrids
- MIL-STD-883, Class B product available

DESCRIPTION:

The IDT10484(10A484), IDT100484(100A484) and IDT101484(101A484) are 16,384-bit high-speed BiCEMOSTM ECL static random access memories organized as 4Kx4, with separate data inputs and outputs. All I/Os are fully compatible with ECL levels.

These devices are part of a family of asynchronous fourbit-wide ECL SRAMs. This device is available in both the traditional corner-power pinout, and "revolutionary" centerpower pin configurations. Because they are manufactured in BiCEMOS[™] technology, power dissipation is greatly reduced over equivalent bipolar devices. Low power operation provides higher system reliability and makes possible the use of the plastic SOJ package for high-density surface mount assembly.

The fast access time and guaranteed Output Hold time allow greater margin for system timing variation. DataIN setup time specified with respect to the trailing edge of Write Pulse eases write timing allowing balanced Read and Write cycle times.

FUNCTIONAL BLOCK DIAGRAM

2811 drw 01

BiCEMOS is a trademark of Integrated Device Technology, Inc.

COMMERCIAL TEMPERATURE RANGE

PIN CONFIGURATIONS

Do 🗌 1 🕓	✓ 28 □ CS		✓ 28 □ Vcc
D1 🗌 2	27 🗌 WE1	Q2 🗌 2	27 🗌 Q1
D2 🗌 3	26 🗌 WE2	Q3 🗌 3	26 🗌 Qo
D3 🗌 4	25 🗌 NC	Ao 🗌 4	25 🗌 D3
Q0 🗌 5	24 🗌 A11	A1 🗌 5	24 🗌 D2
Q1 🗌 6	23 🗌 A10	A2 🗌 6	23 🗌 D1
Vcc 🗌 7	22 🗌 A9	Аз 🗌 7	22 🗌 Do
VCCA 🗌 8	21 🗌 Vee	A4 🗌 8	21 🗌 🔂
Q2 🗌 9	20 🗌 NC	A5 🗌 9	20 🗌 WE1
Q3 🗌 10	19 🗌 A8	A6 🗌 10	19 🗌 WE2
Ao 🗌 11	18 🗌 A7	A7 🗌 11	18 🗌 NC
A1 🗌 12	17 🗖 A6	A8 🗌 12	17 🗌 A11
A2 🗌 13	16 🗌 A5	NC 🗌 13	16 🗌 A10
Аз 🗌 14	15 🗌 A4	VEE [14	15 🗌 A9
	RPOWER		R POWER
	A"		DN-A"
TOP	VIEW	TOP	VIEW
	2811 drw 02a		2811 drw 02b

PIN DESCRIPTIONS

Symbol	Pin Name
A0 through A11	Address Inputs
Do through D3	Data Inputs
Qo through Q3	Data Outputs
<u>WE</u> 1, <u>WE</u> 2	Write Enable Inputs
<u>CS</u>	Chip Select Input (Internal pull down)
VEE	More Negative Supply Voltage
Vcc	Less Negative Supply Voltage

2811 tbl 01

CAPACITANCE (TA = +25°C, f = 1.0MHz)

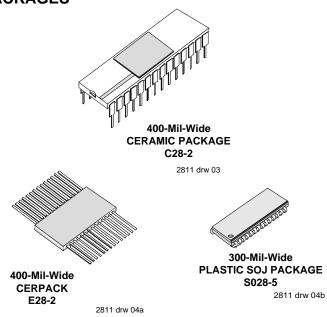
		D	Р	SC		
Symbol	Parameter	Тур.	Max.	Тур.	Max.	Unit
CIN	Input					_
	Capacitance	4		3		pF
Соит	Output Capacitance	6		3		pF

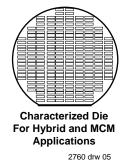
2811 tbl 02

2811 tbl 03

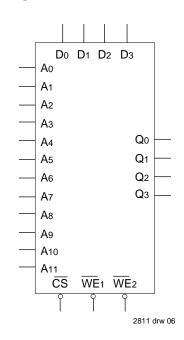
TRUTH TABLE⁽¹⁾

<u>CS</u>	<u>WE</u> 1, <u>WE</u> 2	DataOUT	Function
Н	Х	L	Deselected
L	*H ⁽²⁾	RAM Data	Read
L	*L(3)	L	Write


NOTES:


1. H=High, L=Low, X=Don't Care

2. *H = Either <u>WE</u>1 or <u>WE</u>2 are high.


3. *L = Both <u>WE</u>1 and <u>WE</u>2 are low.

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

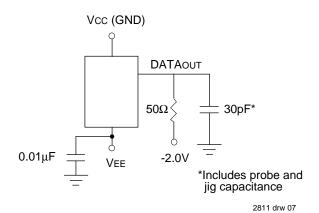
Symbol	Rating	g	Value	Unit
Vterm	Terminal Voltag	•	+0.5 to -7.0	V
Та	Operating Temperature	10K 100K 101K	0 to +75 0 to +85 0 to +75	°C
TBIAS	Temperature U	nder Bias	-55 to +125	°C
Тѕтс	Storage Temperatuure	Ceramic Plastic	-65 to +150 -55 to +125	°C
Рт	Power Dissipati	on	1.5	W
Ιουτ	DC Output Curr (Output High)	ent	-50	mA
NOTE:			2760 tbl 04	

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for ex-tended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS (1)

				10K		100K/1	01K		
Symbol	Parameter		Min.	Max.	TA	Min.	Max.	Unit	
Vон	Output HIGH	Voltage	-1000	-840	0°C	-1025	-880	mV	
	(VIN= VIH(Max) or VIL(Min))	-960	-810	25°C				
	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	-900	-720	75°C				
Vol	Output LOW	Voltage	-1870	-1665	0°C	-1810	-1620	mV	
	(VIN= VIH(Max) or VIL(Min))	-1850	-1650	25°C				
			-1830	-1625	75°C				
Vонс	Output Thres	hold HIGH Voltage	-1020	—	0°C	-1035	—	mV	
	(VIN= VIH(Min)	or VIL(Max))	-980	—	25°C				
			-920		75°C				
Volc	Output Thres	hold LOW Voltage	—	-1645	0°C	—	-1610	mV	
	(VIN= VIH(Min)	or VIL(Max))	—	-1630	25°C				
			—	-1605	75°C				
Vih	Input HIGH V	/oltage	-1145	-840	0°C	-1165	-880	mV	
	(Guaranteed	Input Voltage	-1105	-810	25°C				
	High for All Ir	nputs)	-1045	-720	75°C				
VIL	Input LOW V	0	-1870	-1490	0°C	-1810	-1475	mV	
	(Guaranteed	Input Voltage	-1850	-1475	25°C				
	Low for All In	puts)	-1830	-1450	75°C				
Ін	Input HIGH Cu	rrent							
	VIN= VIH(Max)	<u>CS</u>	—	220	—	—	220	μΑ	
		Others	—	110	_	—	110	μΑ	
lı∟	Input LOW Cu								
	VIN= VIL(Min)	<u>CS</u>	0.5	170	— —	0.5	170	μΑ	
		Others	-50	90	—	50	90	μA	
IEE	Supply Curre	nt	-210	—	_	-190 (100K)	—	mA	
						-210 (101K)	_		


NOTE:

1. RL = 50Ω to -2V, air flow exceeding 2 m/sec.

AC/DC ELECTRICAL OPERATING RANGES

I/O	VEE	ТА
10K	$\textbf{-5.2V}\pm5\%$	0 to +75°C, air flow exceeding 2 m/sec
100K	$\textbf{-4.5V}\pm5\%$	0 to +85°C, air flow exceeding 2 m/sec
101K	-4.75V to -5.46V	0 to +75°C, air flow exceeding 2 m/sec
		2760 tbl 05

AC TEST LOAD CONDITION

-0.9V -1.7V t_{R} $t_{R} = t_{F} = 2.0$ ns typ. Note: All timing measurements are referenced to 50% input levels.

AC TEST INPUT PULSE

2811 drw 08

RISE/FALL TIME

Symbol	Parameter	Min.	Тур.	Max.	Unit
tR	Output Rise Time		2		ns
tF	Output Fall Time	_	2	_	ns

²⁸¹¹ tbl 06

FUNCTIONAL DESCRIPTION

The IDT10484(10A484), IDT100484(100A484), and IDT101484(101A484) BiCEMOS ECL static RAMs provide high speed with low power dissipation typical of BiCMOS ECL. These devices are available in both the traditional corner-power pinout and the "revolutionary" center-power pinout for reduced noise and improved system performance.

READ TIMING

The read timing on these asynchronous devices is straightforward. DataOUT is held low until the device is selected by Chip Select (<u>CS</u>). The Address (ADDR) settles and data appears on the output after time tAA. Note that DataOUT is held for a short time (tOH) after the address begins to change for the next access, then ambiguous data is on the bus until a new time tAA.

WRITE TIMING

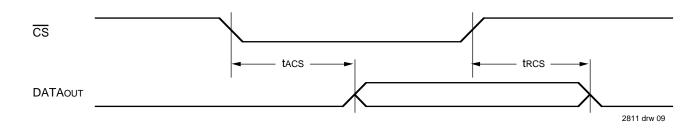
To write data to the device, a Write Pulse need be formed on the Write Enable input (<u>WE</u>) to control the write to the SRAM array. This Write Pulse, called <u>WE</u>, is formed as the logical AND of the <u>WE</u>1 and <u>WE</u>2 inputs; that is, when <u>WE</u>1 and <u>WE</u>2 both are driven low, <u>WE</u> goes low and the write cycle begins.

While <u>CS</u> and ADDR must be set-up when <u>WE</u> goes low, DataIN can settle after the falling edge of <u>WE</u>, giving the data path extra margin. Data is written to the memory cell at the end of the Write Pulse, and addresses and Chip Select must be held after the rising edge of the Write Pulse to ensure satisfactory completion of the cycle.

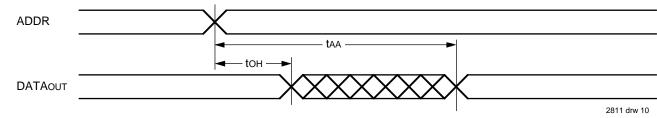
DataOUT is disabled (held low) during the Write Cycle. If <u>CS</u> is held low (active) and addresses remain unchanged, the Data OUT pins will output the written data after "Write Recovery time" (tWR).

Because of the very short Write Pulse requirement, these devices can be cycled as quickly for Writes as for Reads.

AC ELECTRICAL CHARACTERISTICS (Over the AC Operating Range)


		S4		S4.5		S5		S 7		S8		S10		S15		
Symbol	Parameter ⁽¹⁾	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle																
tACS	Chip Select Access Time	—	2.5		2.5		3.0		3.5		5.0		5.0	_	5.0	ns
tRCS	Chip Select Recovery Time	—	2.5		2.5		3.0		3.5		5.0		5.0		5.0	ns
tAA	Address Access Time	—	4.0	_	4.5	_	5.0		7.0		8.0		10.0		15.0	ns
tон	Data Hold from Address Change	1.0	—	1.0	—	1.0	—	1.0	—	1.0	—	1.0	—	1.0	-	ns

NOTE:


1. Input and Output reference level is 50% point of waveform.

2811 tbl 07

READ CYCLE GATED BY CHIP SELECT (1, 2)

READ CYCLE GATED BY ADDRESS (1, 3)

NOTES:

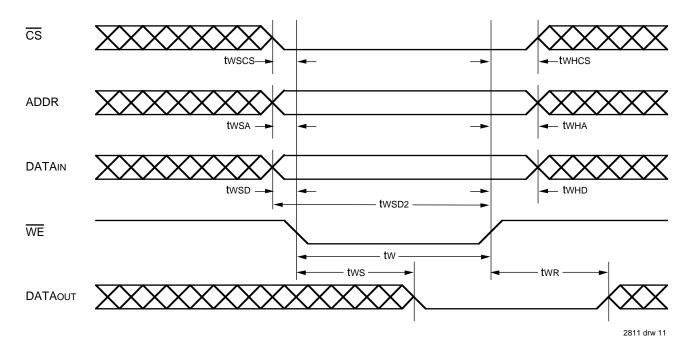
1. WE is high for read cycle.

2. Address valid prior to or minimum tAA-tACS before <u>CS</u> active.

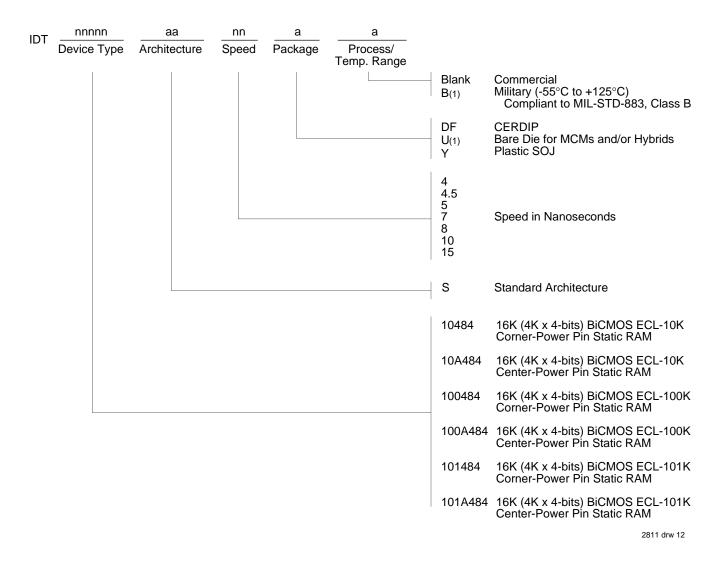
3. <u>CS</u> active prior to or minimum tAA-tACS after address valid.

AC ELECTRICAL CHARACTERISTICS (Over the AC Operating Range)

		S4		S4.5		S5		S7		S8		S10		S15		
Symbol	Parameter ⁽¹⁾	Min.	Max.	Min.	Max.	Unit										
Write Cy	Write Cycle															
tw	Write Pulse Width (twsa = minimum)	3.0		3.5	_	4.0		6.0	—	7.0		8.0	_	10.0	_	ns
twsp	Data Set-up Time	0	_	0	_	0	_	0		0	—	0	—	0	—	ns
twsp2 ⁽²⁾	Data Set-up Time to WE High	2.0	_	2.0		3.0	_	5.0	—	5.0		5.0	_	5.0	—	ns
twsa	Address Set-up Time (tw = minimum)	0		0		0		0	_	0		0	_	0	_	ns
twscs	Chip Select Set-up Time	0	_	0		0	_	0	—	0		0	_	0	_	ns
tWHD	Data Hold Time	1.0	_	1.0		1.0	_	1.0	_	1.0		1.0	—	1.0	_	ns
tWHA	Address Hold Time	1.0	_	1.0		1.0	_	1.0	_	1.0		1.0	—	1.0	_	ns
twncs	Chip Select Hold Time	1.0	—	1.0		1.0	_	1.0	—	1.0	_	1.0	—	1.0	—	ns
tws	Write Disable Time	—	3.0	—	3.0	—	3.0	—	5.0		5.0	—	5.0	—	5.0	ns
twr ⁽³⁾	Write Recovery Time	—	3.0	—	3.0	—	3.0		5.0		5.0	—	5.0	—	5.0	ns
NOTES:	DTES: 2811 ti												311 tbl 08			


NOTES:

1. Input and Output reference level is 50% point of waveform.


2. twsp is specified with respect to the falling edge of WE for compatibility with bipolar part specifications, but this device actually only requires twsp2 with respect to rising edge of WE.

3. twR is defined as the time to reflect the newly written data on the Data Outputs (Q0 to Q3) when no new Address Transition occurs.

WRITE CYCLE TIMING DIAGRAM

ORDERING INFORMATION⁽¹⁾

NOTE:

1. Please contact your IDT Sales Representative for more information on specifications and availability of Military and Die products.

Integrated Device Technology, Inc. reserves the right to make changes to the specifications in this data sheet in order to improve design or performance and to supply the best possible product.

Integrated Device Technology, Inc.

2975 Stender Way, Santa Clara, CA 95054-3090

Telephone: (408) 727-6116

FAX 408-492-8674