Accelerometers, Analog-to-Digital and Digital-to-Analog Converters #### **Accelerometers** ADXL150/ADXL250. Third generation ±50 g surface micromachined accelerometers. These improved replacements for the ADXL05 offer lower noise, wider dynamic range, reduced power consumption and improved zero g bias drift. The ADXL150 is a single axis product; the ADXL250 is a fully integrated dual axis accelerometer with signal conditioning on a single monolithic IC, the first of its kind available on the commercial market. The two sensitive axes of the ADXL250 are orthogonal (90°) to each other. Both devices have their sensitive axes in the same plane as the silicon chip. | ADXL202. A low cost, low power complete 2-axis accelerometer with a measurement range of ±2 g. The ADXL202 can | |--| | ADALZOZ. A low cost, low power complete z-axis accelerometer with a measurement range of ±z q. The ADALZOZ can | | measure both dynamic acceleration (e.g., vibration) and static acceleration (e.g., gravity). | | Mfr.'s | Power | | Primary | BW | Range | Sensitivity | No. of | | | | | |--|----------------|-------------|-----------------|-------------|------------------------------|-------------------------------|----------------|--------------------------|--|--|--| | Туре | Vs
(V) | ls
(mA) | Output | (kHz) | (g) | (mV/g) | Leads | Axis | | | | | ADXL150AQC
ADXL150JQC
ADXL202AQC | +5
+5
+3 | 3
3
1 | DC
DC
PWM | 1
1
6 | ±5 to ±50
±5 to ±50
±2 | 35 to 41
35 to 41
T1/T2 | 14
14
14 | Single
Single
Dual | | | | | ADXL202JQC
ADXL250AQC | +3
+5 | 1
6 | PWM
DC | 6
1 | ±2
±5 to ±50 | T1/T2
35 to 41 | 14
14 | Dual
Dual | | | | ## **ADXL Accelerometer Evaluation Kit** The ADXL-EB evaluation board comes complete with non-resonant surface-mount resistors and capacitors and allows users to configure and customize the accelerometer's scale factor, 0 g bias level, and bandwidth; with either ac or dc coupling. This compact $(0.8^+ > 0.8^+)$ board provides access to every pin, including output, self-test and reference terminals — perfect for initial evaluation and introductory operation. | Mfr.'s
Type | Description | |----------------|-------------------------------------| | ADXL202EB | ADXL202 Dual Axis Evaluation Module | ### **Analog-to-Digital Converters** #### Sampling Analog-to-Digital Converters | Mfr.'s
Type
PDIP | Resolution
in
Bits | Throughput
Rate kSPS
Max. | Linearity Error
(LSB @ TA = +25°C) | SHA
BW
(kHz Typ.) | Bus
Interface
Bits† | Reference
Voltage
Int./Ext.‡ | Comments | |------------------------|--------------------------|---------------------------------|---------------------------------------|-------------------------|---------------------------|------------------------------------|---| | AD7821KN | 8 | 1000.00 | ±1.0 | 100 | 8, μΡ | 0-5 V, Ext. | CMOS, Bipolar or Unipolar Operation | | AD7824KN | 8 | 400.00 | ±1.0 | 10 | 8, μΡ | 0-5 V, Ext. | CMOS, 4-Channel, 8-Bit Sampling ADC | | AD7828KN | 8 | 400.00 | ±1.0 | 10 | 8, μ <u>Ρ</u> | 0-5 V, Ext. | CMOS, 8-Channel, 8-Bit Sampling ADC | | AD7828LN | 8 | 400.00 | ± ¹ / ₂ | 10 | 8, μP | 0-5 V, Ext. | CMOS, 8-Channel, 8-Bit Sampling ADC | | AD1674JN | 12 | 100.00 | ±1.0 | 500 | 8/12/16, μP | 10 V, Int. | Complete AD574A Pinout Compatible, Sampling Input, AC/DC Tested | | AD976AN | 16 | 100.00 | 6 max. | 1500 | 16, 8 Par/Byte, μP | +2.5 V, Int./Ext. | 16-Bit, 100 kSPS ADC | †This column lists the data format for the bus with "µP" indicating microprocessor capability — i.e., for a 12-bit converter 8/12, µP indicates that the data can be formatted for an 8-bit bus or can be in parallel (12 bits) and is microprocessor compatible. ‡Ext. indicates external reference with the range of voltages listed where applicable. Ext. (M) indicates external reference with multiplying capability. Int. indicates reference is internal. A voltage value is given if the reference is #### **Non-Sampling Analog-to-Digital Converters** | | Mfr.'s
Type | | Conv.
Rate | Linearity Error
(LSB @ TA = +25°C) | Bus
Interface | Reference
Voltage | Comments | |----------------------|---------------------------------|---------------|----------------|---------------------------------------|-------------------------------|----------------------------------|---| | Hermetic DIP | PDIP | Bits | (µS Max.) | ix.) (LSB @ IA = +25 C) | Bits* | Int./Ext.† | | | AD574AJD
AD574AKD | AD673JN
AD574AJN
AD574AKN | 8
12
12 | 30
35
35 | ±1/2
±1
±1/2 | 8, μP
8/12, μP
8/12, μP | Int.
10 V, Int.
10 V. Int. | Complete 8-Bit ADC with Reference, Clock and Comparator
Complete ADC with Reference and Clock; Industry Standard
Complete ADC with Reference and Clock; Industry Standard | | - AD37-FAILD | AD674R.IN | 12 | 15 | +1 | 8/12 µP | 10 V, Int. | Complete Monolithic 12-Rit A/D Converter with Reference, Clock, and 3-State Output Buffers | ^{*}This column lists the data format for the bus with "µP" indicating microprocessor capability — i.e., for a 12-bit converter 8/12, µP indicates that the data can be formatted for an 8-bit bus or can be in parallel (12 bits) and is microprocessor compatible. Ext. (M) indicates external reference with multiplying capability. Int. indicates reference is internal. A voltage value is given if the reference is pinned out. #### Sigma Delta Analog-to-Digital Converters | | in | | Mfr.'s
Type | | Linearity Error
(LSB @ TA = +25°C) | Bus
Interface | Reference
Voltage | Comments | |------------------------|-----------------|----------|-----------------------------------|--------------------------|---------------------------------------|--|----------------------|----------| | PDIP | SOIC | Bits | (L3D @ IA = +23 G) | Bits* | Int./Ext.† | | | | | AD7712AN
AD7714AN-5 | —
AD7714AR-5 | 24
24 | ±0.0045% FSR Typ.
±0.0015% FSR | Serial, μP
Serial, μP | 2.50 V, Int.
1.25 V, Ext. | 24-Bit ADC with 1 Differential Input Channel and 1 High Voltage Input Channel
5 V, Charge Balancing ADC with PGA, MUX and Low Pass Filter with Programmable Cutoffs | | | ^{*}This column lists the data format for the bus with "µP" indicating microprocessor capability — i.e., for a 12-bit converter 8/12, µe data can be formatted for an 8-bit bus or can be in parallel (12 bits) and is microprocessor compatible. †Ext. indicates external reference with the range of voltages listed where applicable. Ext. (M) indicates external reference with multiplying capability. Int. indicates reference is internal. A voltage value is given if the reference is pinned out. # Digital-to-Analog Converters A Digital-to-Analog (DAC) Converter accepts a digital input and produces an analog output. The basic DAC consists of a voltage or current reference, binary weighted precision resistors, a set of electronic switches and a means of summing the weighted currents. Three important criteria are required for selecting the right DAC — resolution, accuracy and speed. Other requirements to be considered are temperature stability, input coding, output format, reference requirements and power consumption. #### Single DACs, Current Output | Mfr.'s
Type | | Resolution
in | Resolution Settling Time | | | Reference
Voltage | Comments | | | |---|------------------------------------|-------------------------|---|--|--|--|--|----------------|--| | PDIP | SOIC | Bits | Bits | Bits | (µs Typ.) | (LSD @ IA = +25 C) | Bits† | Int./Ext. (M)‡ | | | AD7524JN
AD7524KN
DAC08CP
DAC08EP
ADDAC8ON-CBI-V
DAC8043FP | AD7524JR
—
DAC08CS
—
— | 8
8
8
12
12 | 0.100
0.100
0.085
0.085
4.000 Max.
0.250 | ± ¹ / ₂
± ¹ / ₄
±0.390% FS
±0.190% FS
± ¹ / ₂
1.000 | 8, µP
8, µP
8
8
12
Serial, µP | Ext. (M)
Ext. (M)
Ext. (M)
Ext. (M)
6.3, ±2%
Ext. (M) | CMOS, Low Cost, 8-Bit Multiplying DAC with Latch
CMOS, Low Cost, 8-Bit Multiplying DAC with Latch
8-Bit High Speed Multiplying DAC
8-Bit High Speed Multiplying DAC
Low Cost, 12-Bit Digital-to-Analog Converter
8-Pin DIP Serial Input 12-Bit CMOS Multiplying DAC | | | ## Single DACs, Voltage Output | AD557JN
AD558JN
AD558KN
AD7224KN
AD667JN
AD667JN | | 8
8
8
12
12 | 0.800
3.000
3.000
5.000 Max.
3.000 | 1.000
±1/2
±1/4
±2.000
±1/2
±1/4 | 8, µP
8, µP
8, µP
8, µP
4/8/12, µP
4/8/12, µP | Int.
Int.
Int.
2-12.5 V, Ext.
10 V, Int.
10 V, Int. | Lowest Cost 8-Bit DACPORT, Single +5 V Supply 10 V Out DACPORT, Single or Dual Supply 10 V Out DACPORT, Single or Dual Supply CMOS, Low Cost 8-Bit DAC Highest Accuracy Complete 12-Bit DAC Highest Accuracy Complete 12-Bit DAC | |---|---|-------------------------|--|---|--|--|--| | AD7233AN | _ | 12 | 10.000 Max. | ±1.000 | Serial, µP | Int. | Smallest 12-Bit Serial DACPORT (8-Pin) Bipolar ±5 V Output Range | | AD767KN
AD669AN | _ | 12
16 | 3.000
8.000 | ±1/2
±4.000 | 12, μP
16, μP | 10 V, Int.
10 V, Int. | Fastest Interface Complete 12-Bit DAC
Monolithic, Complete 16-Bit DAC | | | | | | | | | | †This column lists the data format for the bus with "µP" indicating microprocessor capability — i.e., for a 12-bit converter 8/12, µP indicates that the data can be formatted for an 8-bit bus or can be in parallel (12 bits) and is microprocessor compatible. ‡Ext. indicates external reference with multiplying capability. Int. indicates reference is internal. A voltage value is given if the reference is prinned out. 794 **⋖** ALLIED See Our Manufacturer Index Located In Section 1