

MP45DT02

Datasheet - production data

MEMS audio sensor omnidirectional digital microphone

Features

- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- Omnidirectional sensitivity
- PDM single-bit output with option for stereo configuration
- HLGA package (SMD-compliant) plastic or metal
- ECOPACK[®], RoHS, and "Green" compliant

Applications

- Mobile terminals
- Laptop and notebook computers
- Portable media players
- VoIP

...

- Speech recognition
- A/V eLearning devices
- Gaming and virtual reality input devices
- Digital still and video cameras
- Antitheft systems

Description

The MP45DT02 is a compact, low-power, topport, omnidirectional, digital MEMS microphone. The MP45DT02 is built with a sensing element and an IC interface with stereo capability.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process to produce audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP45DT02 has an acoustic overload point of 120 dBSPL with a best on the market 61 dB signal-to-noise ratio and -26 dB sensitivity.

The MP45DT02 is available in an SMD-compliant package metal (M) or plastic and is guaranteed to operate over an extended temperature range from -30 $^{\circ}$ C to +85 $^{\circ}$ C.

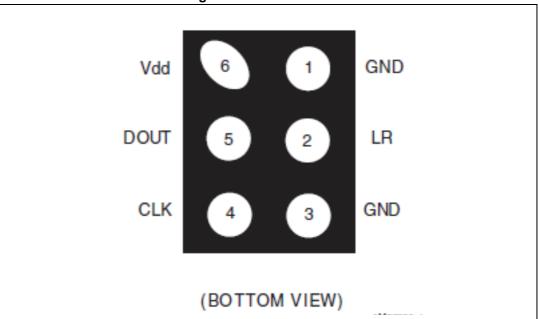
The MP45DT02's digital output and package size (1.25 mm thick) make this device the best solution for laptop and portable computing applications.

Order code	Temperature range [°C]	Package	Packing
MP45DT02	-30 to +85	HLGA 4.72 x 3.76 6LD	Tray
MP45DT02TR	-30 to +85	HLGA 4.72 x 3.76 6LD	Tape and reel
MP45DT02TR-M	-30 to +85	HLGA 4.72 x 3.76 6LD	Tape and reel

Table 1. Device summary

March 2014

DocID018658 Rev 6


This is information on a product in full production.

Contents

1	Pin description			
2	Acoustic and electrical specifications4			
	2.1 Acoustic and electrical characteristics			
	2.2 Timing characteristics 5			
	2.3 Frequency response 6			
3	Sensing element			
4	Absolute maximum ratings 8			
5	Functionality9			
	5.1 L/R channel selection			
6	Application recommendations10			
7	Package mechanical data 11			
8	Revision history14			

1 Pin description

Figure 1. Pin connections

Table 2. Pin description

Pin n°	Pin name	Function
1	GND	0 V supply
2	LR	Left/right channel selection; MIC1 LR is connected to GND or Vdd and MIC2 LR is connected to Vdd or GND (see <i>Figure 5</i>)
3	GND	0 V supply
4	CLK	Synchronization input clock
5	DOUT	Left/right PDM data output
6	Vdd	Power supply

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4 MHz, T = 25 °C, unless otherwise noted.

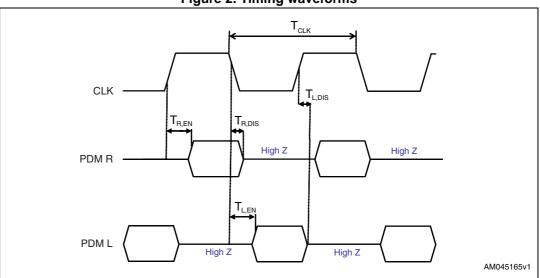
Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.64	1.8	3.6	V
ldd	Current consumption in normal mode	No load on data line		0.65		mA
IddPdn	Current consumption in power-down mode ⁽²⁾			20		μΑ
Scc	Short-circuit current		1		10	mA
AOP	Acoustic overload point			120		dBSPL
So	Sensitivity		-29	-26	-23	dBFS
SNR	Signal-to-noise ratio	A-weighted @1 kHz, 1 Pa		61		dB
PSR	Power supply rejection	Guaranteed by design ⁽³⁾		-70		dBFS
Clock	Input clock frequency ⁽⁴⁾		1	2.4	3.25	MHz
TWK	Wake-up time ⁽⁵⁾	Guaranteed by design			10	ms
Тор	Operating temperature range		-30		+85	°C
V _{IOL}	Low level logic input/output voltage	I _{out} = 1 mA	-0.3		0.35xVdd	V
V _{IOH}	High level logic input/output voltage	I _{out} = 1 mA	0.65xVdd		Vdd+0.3	V

Table 3. Acoustic and electrical characteristics

1. Typical specifications are not guaranteed.

- 2. Input clock in static mode.
- 3. Test signal: 217 Hz square wave, 100 mVpp on Vdd pin.
- 4. Duty cycle: min = 40% max = 60%.
- 5. Time from the first clock edge to valid output data.

Parameter	Test condition	Value
Distortion	100 dBSPL (50 Hz - 4 kHz)	< 1% THD + N
Distortion	115 dBSPL (1 kHz)	< 5% THD + N



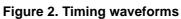

2.2 Timing characteristics

Table 5.	Timina	characteristics
10010 01		0110100100100

Parameter	Description	Min	Max	Unit
f _{CLK}	Clock frequency for normal mode	1	3.25	MHz
f _{PD}	Clock frequency for power-down mode		0.23	MHz
T _{CLK}	Clock period for normal mode	308	1000	ns
T _{R,EN}	Data enabled on DATA line, L/R pin = 1	30 ⁽¹⁾		ns
T _{R,DIS}	Data disabled on DATA line, L/R pin = 1		16 ⁽¹⁾	ns
T _{L,EN}	Data enabled on DATA line, L/R pin = 0	30 ⁽¹⁾		ns
T _{L,DIS}	Data disabled on DATA line, L/R pin = 0		16 ⁽¹⁾	ns

1. From design simulations

2.3 Frequency response

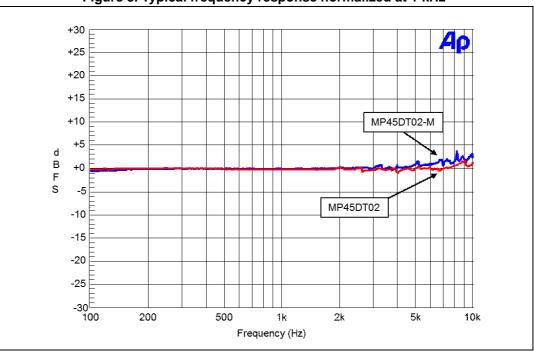


Figure 3. Typical frequency response normalized at 1 kHz

3 Sensing element

The sensing element shall mean the acoustic sensor consisting of a conductive movable plate and a fixed plate placed in a tiny silicon chip. This sensor transduces the sound pressure into the changes of coupled capacity between those two plates.

Omron Corporation supplies this element for STMicroelectronics.

4 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 6	V
Vin	Input voltage on any control pin	-0.3 to Vdd +0.3	V
T _{STG}	Storage temperature range	-40 to +125	°C
ESD	Electrostatic discharge protection	2 (HBM)	kV

Table 6. Absolute maximum ratings

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is ESD-sensitive, improper handling can cause permanent damage to the part.

5 Functionality

5.1 L/R channel selection

The L/R digital pad lets the user select the DOUT signal pattern as explained in *Table 7*. The L/R pin must be connected to Vdd or GND.

L/R	CLK low	CLK high
GND	Data valid	High impedence
Vdd	High impedence	Data valid

Table 7. L/R channel selection

6 Application recommendations

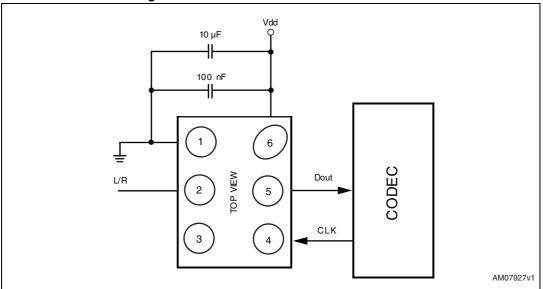
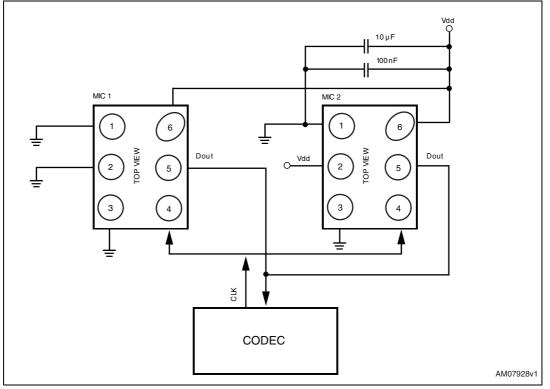
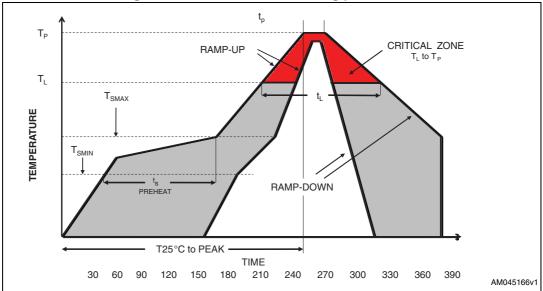



Figure 4. MP45DT02 electrical connections

Power supply decoupling capacitors (100 nF ceramic, 10 μ F ceramic) should be placed as near as possible to pin 6 of the device (common design practice).

The L/R pin must be connected to Vdd or GND (refer to Table 7).

DocID018658 Rev 6

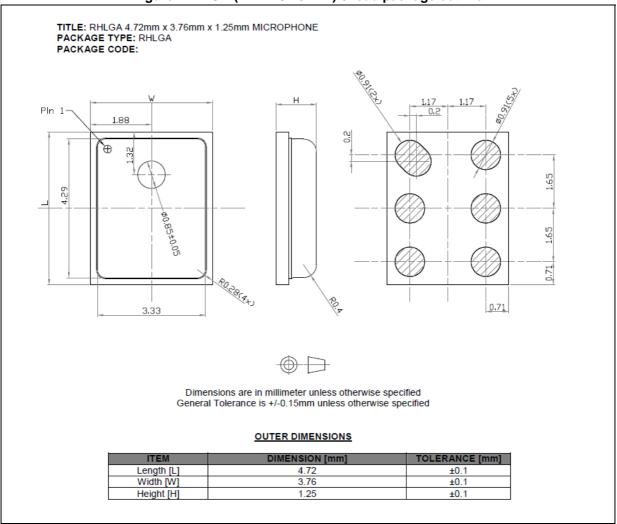

7 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Soldering information

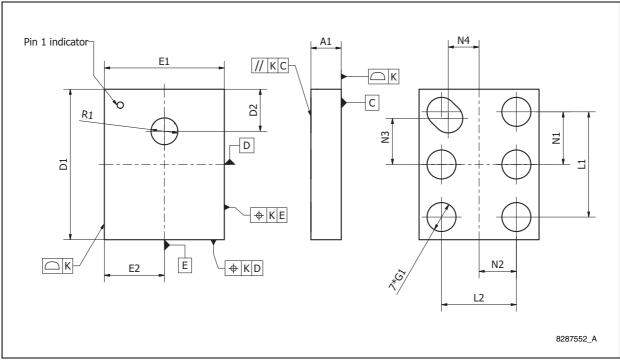
The HLGA (4.72 x 3.76 x 1.25) mm package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Landing pattern and soldering recommendations are available at www.st.com.



Tuble 0. Neoonintended Soldering profile linits				
Parameter	Pb free			
T _L to T _P	3 °C/sec max			
T _{SMIN}	150 °C			
T _{SMAX}	200 °C			
t _S	60 sec to 120 sec			
T_{SMAX} to T_{L}				
tL	60 sec to 150 sec			
TL	217 °C			
T _P	260 °C max			
	20 sec to 40 sec			
	6 °C/sec max			
	8 minutes max			
	Parameter TL to TP TSMIN TSMAX tS TSMAX to TL tL TL			

Table 8. Recommended soldering profile limits



Note: The MEMS microphone metal cap can exhibit some level of variation in color when the device is subjected to a thermal process.

Figure 8. HLGA (4.72 x 3.76 mm9 6-lead package outline

Symbol	mm.			
Symbol	Min.	Тур.	Max.	
A1	1.125	1.250	1.375	
D1	4.670	4.720	4.770	
D2		1.320		
R1	0.750	0.840	0.930	
E1	3.710	3.760	3.810	
E2		1.880		
L1	3.200	3.300	3.400	
L2	2.250	2.350	2.450	
N1	1.550	1.650	1.750	
N2	1.075	1.175	1.275	
N3	1.350	1.450	1.550	
N4	0.865	0.965	1.065	
G1	0.810	0.910	1.010	
К		0.050		

Table 9. HLGA (4.72 x 3.76 mm) 6-lead package dimensions

8 Revision history

Date	Revision	Changes
28-Mar-2011	1	Initial release
21-Oct-2011	2	Added max. peak temperature T _P to <i>Table 8</i> Added min. and max. sensitivity So to <i>Table 3</i>
01-Mar-2012	3	Document status promoted from preliminary to production data Updated SNR to 61 dB (<i>Description</i> and <i>Table 3</i>)
07-May-2012	4	Added V_{IOL} , V_{IOH} to Table 3: Acoustic and electrical characteristics
05-Jul-2012	5	Added Section 3: Sensing element
21-Mar-2014	6	Added new package <i>Figure 7: HLGA (4.72 x 3.76 mm) 6-lead</i> package outline

Table 10. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID018658 Rev 6