

KSZ8081MNX/KSZ8081RNB

10Base-T/100Base-TX Physical Layer Transceiver

Revision 1.1

General Description

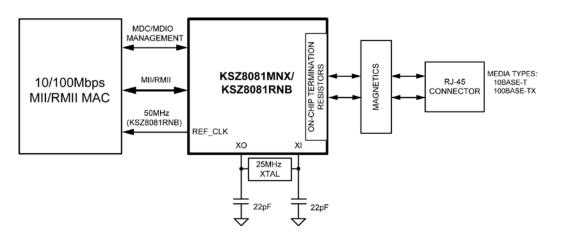
The KSZ8081 is a single-supply 10Base-T/100Base-TX Ethernet physical-layer transceiver for transmission and reception of data over standard CAT-5 unshielded twisted pair (UTP) cable.

The KSZ8081 is a highly-integrated PHY solution. It reduces board cost and simplifies board layout by using on-chip termination resistors for the differential pairs and by integrating a low-noise regulator to supply the 1.2V core.

The KSZ8081MNX offers the Media Independent Interface (MII) and the KSZ8081RNB offers the Reduced Media Independent Interface (RMII) for direct connection with MII/RMII-compliant Ethernet MAC processors and switches.

A 25MHz crystal is used to generate all required clocks, including the 50MHz RMII reference clock output for the KSZ8081RNB.

The KSZ8081 provides diagnostic features to facilitate system bring-up and debugging in production testing and in product deployment. Parametric NAND tree support enables fault detection between KSZ8081 I/Os and the board. Micrel LinkMD[®] TDR-based cable diagnostics identify faulty copper cabling.


The KSZ8081MNX and KSZ8081RNB are available in 32pin, lead-free QFN packages (see "Ordering Information").

Data sheets and support documentation are available on Micrel's web site at: <u>www.micrel.com</u>.

Features

- Single-chip 10Base-T/100Base-TX IEEE 802.3 compliant Ethernet transceiver
- MII interface support (KSZ8081MNX)
- RMII v1.2 Interface support with a 50MHz reference clock output to MAC, and an option to input a 50MHz reference clock (KSZ8081RNB)
- Back-to-back mode support for a 100Mbps copper repeater
- MDC/MDIO management interface for PHY register configuration
- Programmable interrupt output
- LED outputs for link, activity, and speed status indication
- On-chip termination resistors for the differential pairs
- Baseline wander correction
- HP Auto MDI/MDI-X to reliably detect and correct straight-through and crossover cable connections with disable and enable option
- Auto-negotiation to automatically select the highest linkup speed (10/100Mbps) and duplex (half/full)
- · Power-down and power-saving modes
- LinkMD TDR-based cable diagnostics to identify faulty copper cabling
- Parametric NAND Tree support for fault detection between chip I/Os and the board

Functional Diagram

LinkMD is a registered trademark of Micrel, Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Features (Continued)

- Loopback modes for diagnostics
- Single 3.3V power supply with VDD I/O options for 1.8V, 2.5V, or 3.3V
- Built-in 1.2V regulator for core
- Available in 32-pin (5mm × 5mm) QFN package

Applications

- Game console
- IP phone
- IP set-top box
- IP TV
- LOM
- Printer

Ordering Information

Part Number	Temperature Range	Package	Lead Finish	Wire Bonding	Description
KSZ8081MNXCA	0°C to 70°C	32-Pin QFN	Pb-Free	Gold	MII, Commercial Temperature, Gold Wire Bonding
KSZ8081MNXIA ⁽¹⁾	-40°C to 85°C	32-Pin QFN	Pb-Free	Gold	MII, Industrial Temperature, Gold Wire Bonding
KSZ8081RNBCA	0°C to 70°C	32-Pin QFN	Pb-Free	Gold	RMII with 25MHz crystal/clock input and 50MHz RMII REF_CLK output (power-up default), Commercial Temperature, Gold Wire Bonding
KSZ8081RNBIA ⁽¹⁾	–40°C to 85°C	32-Pin QFN	Pb-Free	Gold	RMII with 25MHz crystal/clock input and 50MHz RMII REF_CLK output (power-up default), Industrial Temperature, Gold Wire Bonding
KSZ8081MNX-EVAL	0°C to 70°C	32-Pin QFN	Pb-Free		KSZ8081MNX Evaluation Board (Mounted with KSZ8081MNX device in commercial temperature)
KSZ8081RNB-EVAL	0°C to 70°C	32-Pin QFN	Pb-Free		KSZ8081RNB Evaluation Board (Mounted with KSZ8081RNB device in commercial temperature)

Note:

1. Contact factory for availability.

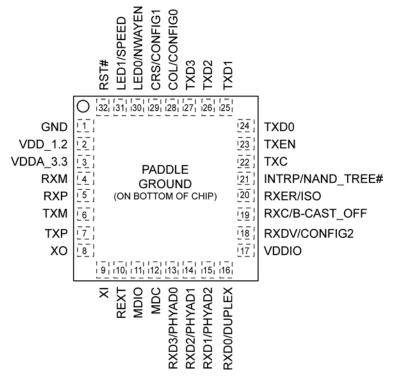
Revision History

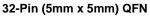
Date	Summary of Changes	Revision
11/5/12	Initial release of datasheet.	1.0
2/6/14	Removed copper wire bonding part numbers from Ordering Information. Added note for TXC (Pin 22) and Register 16h, Bit [15] regarding a Reserved Factory Mode for KSZ8081MNX device. Corrected TXC (Pin 22) pin type for KSZ8081MNX device. Removed TXC and RXC clock connections for MII Back-to-Back mode. This is a datasheet correction. There is no change to the silicon. Added series resistance and load capacitance for the crystal selection criteria.	1.1

Contents

General Description	1
Features	1
Functional Diagram	1
Features (Continued)	2
Applications	2
Ordering Information	2
Revision History	
Contents	
List of Figures	6
List of Tables	7
Pin Configuration– KSZ8081MNX	
Pin Description– KSZ8081MNX	9
Strapping Options – KSZ8081MNX	
Pin Configuration – KSZ8081RNB	
Pin Description– KSZ8081RNB	
Strapping Options – KSZ8081RNB	
Functional Description: 10Base-T/100Base-TX Transceiver	
100Base-TX Transmit	
100Base-TX Receive	
Scrambler/De-Scrambler (100Base-TX Only)	
10Base-T Transmit	
10Base-T Receive	
SQE and Jabber Function (10Base-T Only)	
PLL Clock Synthesizer	
Auto-Negotiation	
MII Interface (KSZ8081MNX only)	
MII Signal Definition	
MII Signal Diagram	
RMII Data Interface (KSZ8081RNB only)	
RMII – 25MHz Clock Mode	
RMII – 50MHz Clock Mode RMII Signal Definition	
RMII Signal Diagram	
Back-to-Back Mode – 100Mbps Copper Repeater	
MII Back-to-Back Mode (KSZ8081MNX only)	
RMII Back-to-Back Mode (KSZ8081RNB only)	
MII Management (MIIM) Interface	
Interrupt (INTRP)	

Straight Cable 28 Crossover Cable 29 Loopback Mode 30 Local (Digital) Loopback 30 INAMD [®] Cable Diagnostic 31 INAND Tree Support 32 NAND Tree VO Testing 33 Power Management 34 Power Saving Mode 34 Ensryp-Detact Power Down Mode 34 Stow-Oscillator Mode 34 Stow-Oscillator Mode 34 Reference Circuit for Power and Ground Connections 35 Typical Current/Power Consumption 36 Transceiver (3 3V), Digital VOs (1 3V) 36 Transceiver (3 3V), Digital VOs (1 3V) 36 Transceiver (3 3V), Digital VOs (1 3V) 36 Transceiver (3 3V), Digital VOs (1 4V) 37 Register Description 39 Absolute Maximum Ratings ¹⁰ 49 Operating Ratings ²⁰ 49 Uning Diagrams 51 Mil SQE Timing (10Base-T) 52 Mil Receive Timing (10Base-T) 53 Mil Receive Timing (10Base-T) 54 <th>HP Auto MDI/MDI-X</th> <th></th>	HP Auto MDI/MDI-X	
Loopback Mode 30 Local (Digital) Loopback. 30 Remote (Analog) Loopback. 30 InkMD [®] Cable Diagnostic 31 NAND Tree Support. 32 NAND Tree VIO Testing 33 Power Management. 34 Power-Saving Mode 34 Energy-Detect Power-Down Mode 34 Stow -Socializor Mode. 34 Reference Circuit for Power and Ground Connections. 35 Typical Current/Power Consumption 36 Transceiver (3.3V). Digital VOS (1.8V). 37 Register Description. 38 Register Description. 39 Absolute Maximum Ratings ⁽¹⁾ . 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 Mil Teoscine Timing (10Base-T). 52 Mil Receive Timing (10Base-T). 53 <	Straight Cable	
Local (Digital) Loopback 30 Remote (Analog) Loopback 30 LinkMD® Cable Diagnostic 31 NAND Tree Support 32 NAND Tree VO Testing 33 Power Saving Mode 34 Energy-Detect Power-Down Mode 34 Slow-Oscillator Mode 35 Transceiver (3.3V), Digital VOs (3.3V) 36 Transceiver (3.3V), Digital VOs (2.5V) 36 Transceiver (3.3V), Digital VOs (2.5V) 36 Transceiver (3.3V), Digital VOs (3.4V) 36 Mages Description 39 Absolute Maximum Ratings ¹¹ 49 Derrating Ratings ¹² 49 Electrical Characteristics ¹³ 49 Timing Diagrams 51 MII Receive Timing (10Base-T) 52 MI Receive Timing (10Base-T) 53 MI Receive Timing (10Base-T) 53 MI Receive Timing (10Base-T) 53 <td>Crossover Cable</td> <td>29</td>	Crossover Cable	29
Remote (Ånalog) Loopback 30 LinkMD [®] Cable Diagnostic 31 NAND Tree Support 32 NAND Tree VO Testing 33 Power Management 34 Power-Saving Mode 34 Power-Saving Mode 34 Energy-Detect Power-Down Mode 34 Slow-Oscillator Mode 34 Slow-Oscillator Mode 34 Reference Circuit for Power and Ground Connections 36 Transceiver (3.3V), Digital VOs (3.3V) 36 Transceiver (3.3V), Digital VOs (2.5V) 36 Transceiver (3.3V), Digital VOS (3.4V) 37 Stoper Map 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Detertical Characteristics ⁽³⁾ 49 Imil Transmit Timing (10Base-T) 51 MII Receive Timing (10Base-T) 52 <td< td=""><td>Loopback Mode</td><td></td></td<>	Loopback Mode	
LinkMD [®] Cable Diagnostic 31 NAND Tree Support 32 NAND Tree I/O Testing 33 Power Management 34 Power-Soving Mode 34 Energy-Detect Power-Down Mode 34 Stow-Oscillator Mode 34 Stow-Oscillator Mode 34 Reference Circuit for Power and Ground Connections 35 Typical Current/Power Consumption 36 Transceiver (3.3V), Digital I/Os (2.5V) 36 Transceiver (3.3V), Digital I/Os (2.5V) 36 Transceiver (3.3V), Digital I/Os (1.8V) 37 Register Map 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Iming Diagrams 51 MII Transmit Timing (10Base-T) 52 MII Transmi	Local (Digital) Loopback	
NAND Tree Suppor 32 NAND Tree I/O Testing 33 Power Management 34 Power-Saving Mode 34 Energy-Detect Power-Down Mode 34 Stow-Oscillator Mode 34 Stow-Oscillator Mode 34 Stow-Oscillator Mode 34 Reference Cricuit for Power and Ground Connections. 35 Typical Current/Power Consumption 36 Transceiver (3.3V), Digital I/Os (3.3V) 36 Transceiver (3.3V), Digital I/Os (3.3V) 36 Transceiver (3.3V), Digital I/Os (1.8V) 37 Register Description 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Timing Diagrams 51 MII SoE Timing (10Base-T) 51 MII Transmit Timing (10Base-T) 52 MII Transit Timing		
NAND Tree I/O Testing 33 Power Management 34 Power-Saving Mode 34 Energy-Detect Power-Down Mode 34 Power-Down Mode 34 Stow-Oscillator Mode 34 Stow-Oscillator Mode 34 Reference Circuit for Power and Ground Connections 35 Typical Current/Power Consumption 36 Transceiver (3.3V), Digital I/Os (3.3V) 36 Transceiver (3.3V), Digital I/Os (1.8V) 36 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII SQE Timing (10Base-T) 53 MII Transmit Timing (10Base-T) 53 MII Receive Timing (10Base-TX) 55 RMII Timing 56 RAUCMED Timing 56 Power-Vip/Reset Timing 59 Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Circuit – Connection and Selection	LinkMD [®] Cable Diagnostic	
Power Management 34 Power-Saving Mode 34 Power-Down Mode 34 Power-Down Mode 34 Slow-Oscillator Mode 34 Slow-Oscillator Mode 34 Reference Circuit for Power and Ground Connections 35 Typical Current/Power Consumption 36 Transceiver (3.3V), Digital I/Os (3.3V) 36 Transceiver (3.3V), Digital I/Os (1.8V) 37 Register Map 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII Raceive Timing (10Base-T) 52 MII Transmit Timing (10Base-T) 53 MII Receive Timing (10Base-TX) 55 RMII Timing 56 RVM McAgoitation Timing 56 Reference Circuit - LED Strap-In Pins. 57 MDC/MDIO Timing 58 Power-Up/Reset Timing 58 Reference Clock - Connection and Selection 53 <td>NAND Tree Support</td> <td></td>	NAND Tree Support	
Power-Saving Mode 34 Energy-Detect Power-Down Mode 34 Power-Down Mode 34 Stow-Socillator Mode 34 Stow-Socillator Mode 34 Reference Circuit for Power and Ground Connections 35 Typical Current/Power Consumption 36 Transceiver (3.3V), Digital I/Os (3.3V) 36 Transceiver (3.3V), Digital I/Os (2.5V) 36 Transceiver (3.3V), Digital I/Os (1.8V) 37 Register Map 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII Transmit Timing (10Base-T) 52 MII Transmit Timing (10Base-T) 53 MII Transmit Timing (10Base-TX) 54 MII Transmit Timing (10Base-TX) 55 Auto-Negotiation Timing 56 Auto-Negotiation Timing 56 Auto-Negotiation Timing 58 Power-Up/Reset Timing 58 Power-Up/Rese	NAND Tree I/O Testing	
Energy-Detect Power-Down Mode 34 Power-Down Mode 34 Slow-Oscillator Mode 34 Reference Circuit for Power and Ground Connections 35 Typical Current/Power Consumption 36 Transceiver (3.3V), Digital I/Os (3.3V) 36 Transceiver (3.3V), Digital I/Os (2.5V) 36 Transceiver (3.3V), Digital I/Os (2.5V) 36 Transceiver (3.3V), Digital I/Os (1.8V) 37 Register Map 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII SQE Timing (10Base-T) 51 MII Transmit Timing (10Base-T) 52 MII Transmit Timing (10Base-T) 53 MII Transmit Timing (10Base-T) 53 MII Transmit Timing (10Base-T) 54 MII Receive Timing (10Base-TX) 55 Auto-Negotiation Timing 56 Auto-Negotiation Timing 56 Auto-Negotiation Timing 56 Auto-Negotiation Timing 58	Power Management	
Power-Down Mode 34 Slow-Oscillator Mode 34 Reference Circuit for Power and Ground Connections 35 Typical Current/Power Consumption 36 Transceiver (3.3V), Digital I/OS (3.3V) 36 Transceiver (3.3V), Digital I/OS (2.5V) 36 Transceiver (3.3V), Digital I/OS (1.8V) 37 Register Map 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ^[2] 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII SQE Timing (10Base-T) 51 MII Receive Timing (10Base-T) 52 MII Receive Timing (10Base-T) 53 MII Receive Timing (10Base-T) 53 MII Receive Timing (10Base-T) 53 MII Receive Timing (100Base-TX) 54 MII Receive Timing (100Base-TX) 54 MII Receive Timing (100Base-TX) 54 MII Receive Timing (100Base-TX) 55 Refl Transmit Timing (100Base-TX) 56 Auto-Negotiation Timing 56 Auto-Negotiation Timing 56	Power-Saving Mode	
Slow-Oscillator Mode	Energy-Detect Power-Down Mode	
Reference Circuit for Power and Ground Connections 35 Typical Current/Power Consumption 36 Transceiver (3.3V), Digital I/Os (3.3V) 36 Transceiver (3.3V), Digital I/Os (2.5V) 36 Transceiver (3.3V), Digital I/Os (2.5V) 36 Transceiver (3.3V), Digital I/Os (1.8V) 37 Register Map 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII SQE Timing (10Base-T) 51 MII Receive Timing (10Base-T) 52 MII Receive Timing (10Base-T) 53 MII Receive Timing (10Base-T) 52 RMII Receive Timing (100Base-TX) 54 MII Receive Timing (100Base-TX) 55 RMII Timing 56 Auto-Negotiation Timing 56 Auto-Negotiation Timing 58 Power-Up/Reset Timing 58 Power-Up/Reset Timing 58 Power-Up/Reset Timing 58 Reference Circuits – LED Strap-In Pins 61		
Typical Current/Power Consumption 36 Transceiver (3.3V), Digital I/Os (3.3V) 36 Transceiver (3.3V), Digital I/Os (2.5V) 36 Transceiver (3.3V), Digital I/Os (1.8V) 37 Register Map 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII SQE Timing (10Base-T) 52 MII Receive Timing (10Base-T) 53 MII Transmit Timing (10Base-T) 53 MII Receive Timing (10Base-T) 54 MII Receive Timing (10Base-TX) 55 RMII Timing 56 Auto-Negotiation Timing 56 Auto-Negotiation Timing 58 Power-Up/Reset Timing 58 Reference Circuit 60 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65		
Transceiver (3.3V), Digital I/Os (3.3V). 36 Transceiver (3.3V), Digital I/Os (2.5V). 36 Transceiver (3.3V), Digital I/Os (1.8V). 37 Register Map. 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ . 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII SQE Timing (10Base-T) 51 MII Receive Timing (10Base-T) 53 MII Transmit Timing (10Base-T) 53 MII Transmit Timing (10Base-TX) 54 MII Receive Timing (100Base-TX) 55 RRIII Timing 56 Auto-Negotiation Timing 58 Power-Up/Reset Timing 58 Power-Up/Reset Timing 58 Reference Circuit 60 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65		
Transceiver (3.3V), Digital I/Os (2.5V) 36 Transceiver (3.3V), Digital I/Os (1.8V) 37 Register Map 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII SQE Timing (10Base-T) 51 MII Transmit Timing (10Base-T) 52 MII Receive Timing (10Base-T) 52 MII Receive Timing (10Base-T) 53 MII Receive Timing (10Base-T) 54 MII Receive Timing (10Base-T) 55 RMII Timing (10Base-T) 55 RMII Transmit Timing (10Base-TX) 54 MII Receive Timing (10Base-TX) 54 MIR Receive Timing (10Base-TX) 55 RMII Timing 56 Auto-Negotiation Timing 56 Auto-Negotiation Timing 57 MDC/MDIO Timing 58 Power-Up/Reset Timing 59 Reset Circuit 60 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection <td< td=""><td>Typical Current/Power Consumption</td><td></td></td<>	Typical Current/Power Consumption	
Transceiver (3.3V), Digital I/Os (1.8V) 37 Register Map 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII SQE Timing (10Base-T) 51 MII Transmit Timing (10Base-T) 52 MII Receive Timing (10Base-T) 53 MII Receive Timing (100Base-TX) 54 MIR Receive Timing (100Base-TX) 54 MIR Receive Timing (100Base-TX) 55 RMII Timing 56 Auto-Negotiation Timing 56 Power-Up/Reset Timing 58 Power-Up/Re	Transceiver (3.3V), Digital I/Os (3.3V)	
Register Map 38 Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII SQE Timing (10Base-T) 51 MII SQE Timing (10Base-T) 52 MII Receive Timing (10Base-T) 52 MII Receive Timing (100Base-TX) 54 MII Receive Timing (100Base-TX) 55 RMII Timing 56 Auto-Negotiation Timing 56 Power-Up/Reset Timing 58 Power-Up/Reset Timing 59 Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65		
Register Description 39 Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII SQE Timing (10Base-T) 51 MII Transmit Timing (10Base-T) 52 MII Receive Timing (10Base-T) 53 MII Transmit Timing (100Base-TX) 53 MII Transmit Timing (100Base-TX) 54 MII Receive Timing (100Base-TX) 55 RMII Timing 56 Auto-Negotiation Timing 56 Auto-Negotiation Timing 58 Power-Up/Reset Timing 59 Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65		
Absolute Maximum Ratings ⁽¹⁾ 49 Operating Ratings ⁽²⁾ 49 Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII SQE Timing (10Base-T) 51 MII Transmit Timing (10Base-T) 52 MII Receive Timing (10Base-T) 53 MII Transmit Timing (10Base-T) 53 MII Receive Timing (10Base-TX) 54 MII Receive Timing (100Base-TX) 55 RMII Timing 56 Auto-Negotiation Timing 56 Power-Up/Reset Timing 58 Power-Up/Reset Timing 59 Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65		
Operating Ratings ⁽²⁾	Register Description	
Electrical Characteristics ⁽³⁾ 49 Timing Diagrams 51 MII SQE Timing (10Base-T) 51 MII Transmit Timing (10Base-T) 52 MII Receive Timing (10Base-T) 53 MII Transmit Timing (100Base-TX) 54 MII Receive Timing (100Base-TX) 54 MII Receive Timing (100Base-TX) 55 RMII Timing 56 Auto-Negotiation Timing 57 MDC/MDIO Timing 58 Power-Up/Reset Timing 59 Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65	Absolute Maximum Ratings ⁽¹⁾	
Timing Diagrams51MII SQE Timing (10Base-T)51MII Transmit Timing (10Base-T)52MII Receive Timing (10Base-TX)53MII Transmit Timing (100Base-TX)54MII Receive Timing (100Base-TX)55RMII Timing56Auto-Negotiation Timing57MDC/MDIO Timing58Power-Up/Reset Timing59Reset Circuit60Reference Circuits – LED Strap-In Pins61Reference Clock – Connection and Selection62Magnetic – Connection and Selection63Recommended Land Pattern65	Operating Ratings ⁽²⁾	
MII SQE Timing (10Base-T) 51 MII Transmit Timing (10Base-T) 52 MII Receive Timing (10Base-TX) 53 MII Receive Timing (100Base-TX) 54 MII Receive Timing (100Base-TX) 55 RMII Timing 56 Auto-Negotiation Timing 56 Auto-Negotiation Timing 57 MDC/MDIO Timing 58 Power-Up/Reset Timing 59 Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65	Electrical Characteristics ⁽³⁾	
MII Transmit Timing (10Base-T) 52 MII Receive Timing (10Base-TX) 53 MII Transmit Timing (100Base-TX) 54 MII Receive Timing (100Base-TX) 55 RMII Timing 56 Auto-Negotiation Timing 57 MDC/MDIO Timing 58 Power-Up/Reset Timing 59 Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65	Timing Diagrams	51
MII Receive Timing (10Base-T) 53 MII Transmit Timing (100Base-TX) 54 MII Receive Timing (100Base-TX) 55 RMII Timing 56 Auto-Negotiation Timing 57 MDC/MDIO Timing 58 Power-Up/Reset Timing 59 Reference Circuit 60 Reference Clock – Connection and Selection 61 Reference Clock – Connection and Selection 63 Recommended Land Pattern 65	MII SQE Timing (10Base-T)	51
MII Transmit Timing (100Base-TX). 54 MII Receive Timing (100Base-TX). 55 RMII Timing 56 Auto-Negotiation Timing 57 MDC/MDIO Timing 58 Power-Up/Reset Timing 59 Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65	MII Transmit Timing (10Base-T)	
MII Receive Timing (100Base-TX) 55 RMII Timing 56 Auto-Negotiation Timing 57 MDC/MDIO Timing 58 Power-Up/Reset Timing 59 Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65		
RMII Timing 56 Auto-Negotiation Timing 57 MDC/MDIO Timing 58 Power-Up/Reset Timing 59 Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65		
Auto-Negotiation Timing 57 MDC/MDIO Timing 58 Power-Up/Reset Timing 59 Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65		
MDC/MDIO Timing		
Power-Up/Reset Timing 59 Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65		
Reset Circuit 60 Reference Circuits – LED Strap-In Pins 61 Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65		
Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65		
Reference Clock – Connection and Selection 62 Magnetic – Connection and Selection 63 Recommended Land Pattern 65	Reference Circuits – LED Strap-In Pins	61
Recommended Land Pattern		
	Magnetic – Connection and Selection	63
	Recommended Land Pattern	65
Package Information · ·	Package Information ⁽¹⁾	66


List of Figures


Figure 1. Auto-Negotiation Flow Chart	
Figure 2. KSZ8081MNX MII Interface	
Figure 3. KSZ8081RNB RMII Interface (25MHz Clock Mode)	25
Figure 4. KSZ8081RNB RMII Interface (50MHz Clock Mode)	25
Figure 5. KSZ8081MNX/RNB to KSZ8081MNX/RNB Back-to-Back Copper Repeater	
Figure 6. Typical Straight Cable Connection	
Figure 7. Typical Crossover Cable Connection	29
Figure 8. Local (Digital) Loopback	
Figure 9. Remote (Analog) Loopback	
Figure 10. KSZ8081MNX/RNB Power and Ground Connections	35
Figure 11. MII SQE Timing (10Base-T)	51
Figure 12. MII Transmit Timing (10Base-T)	52
Figure 13. MII Receive Timing (10Base-T)	53
Figure 14. MII Transmit Timing (100Base-TX)	54
Figure 15. MII Receive Timing (100Base-TX)	55
Figure 16. RMII Timing – Data Received from RMII	
Figure 17. RMII Timing – Data Input to RMII	56
Figure 18. Auto-Negotiation Fast Link Pulse (FLP) Timing	57
Figure 19. MDC/MDIO Timing	58
Figure 20. Power-Up/Reset Timing	
Figure 21. Recommended Reset Circuit	60
Figure 22. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output	60
Figure 23. Reference Circuits for LED Strapping Pins	61
Figure 24. 25MHz Crystal/Oscillator Reference Clock Connection	
Figure 25. 50MHz Oscillator Reference Clock Connection	
Figure 26. Typical Magnetic Interface Circuit	
Figure 27. Recommended Land Pattern, 32-Pin (5mm x 5mm) QFN	65

List of Tables

Table 1. MII Signal Definition	21
Table 2. RMII Signal Definition	23
Table 3. MII Signal Connection for MII Back-to-Back Mode (100Base-TX Copper Repeater)	26
Table 4. RMII Signal Connection for RMII Back-to-Back Mode (100Base-TX Copper Repeater)	27
Table 5. MII Management Frame Format for the KSZ8081MNX/RNB	28
Table 6. MDI/MDI-X Pin Definition	
Table 7. NAND Tree Test Pin Order for KSZ8081MNX	32
Table 8. NAND Tree Test Pin Order for KSZ8081RNB	33
Table 9. KSZ8081MNX/RNB Power Pin Description	35
Table 10. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 3.3V)	
Table 11. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 2.5V)	
Table 12. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 1.8V)	37
Table 13. MII SQE Timing (10Base-T) Parameters	51
Table 14. MII Transmit Timing (10Base-T) Parameters	52
Table 15. MII Receive Timing (10Base-T) Parameters	53
Table 16. MII Transmit Timing (100Base-TX) Parameters	
Table 17. MII Receive Timing (100Base-TX) Parameters	
Table 18. RMII Timing Parameters – KSZ8081RNB (25MHz input to XI pin, 50MHz output from REF_CLK pin)	56
Table 19. RMII Timing Parameters – KSZ8081RNB (50MHz input to XI pin)	56
Table 20. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters	
Table 21. MDC/MDIO Timing Parameters	58
Table 22. Power-Up/Reset Timing Parameters	
Table 23. 25MHz Crystal / Reference Clock Selection Criteria	
Table 24. 50MHz Oscillator / Reference Clock Selection Criteria	
Table 25. Magnetics Selection Criteria	64
Table 26. Compatible Single-Port 10/100 Magnetics	64

Pin Configuration – KSZ8081MNX

Pin Description – KSZ8081MNX

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function		
1	GND	Gnd	Ground		
2		Р	1.2V core V _{DD} (power supplied by KSZ8081MNX)		
2	VDD_1.2	P	Decouple with 2	2.2μF and 0.1μF capacitors to ground.	
3	VDDA_3.3	Р	3.3V analog V _{DD}		
4	RXM	I/O	Physical receive	e or transmit signal (– differential)	
5	RXP	I/O	Physical receive	e or transmit signal (+ differential)	
6	TXM	I/O	Physical transm	it or receive signal (- differential)	
7	TXP	I/O	Physical transm	it or receive signal (+ differential)	
8	ХО	0	Crystal feedbac	k for 25MHz crystal	
0	70	0	This pin is a no	connect if an oscillator or external clock source is used.	
9	XI		Crystal / Oscilla	tor / External Clock input	
5	XI	1	25MHz ±50ppm		
10	REXT		Set PHY transmit output current		
10	IU REAT		Connect a $6.49k\Omega$ resistor to ground on this pin.		
			Management Interface (MII) Data I/O		
11	MDIO	lpu/Opu	This pin has a weak pull-up, is open-drain, and requires an external $1.0 \mbox{k}\Omega$ pull-up resistor.		
12	MDC	lpu	Management Interface (MII) Clock input		
12	MDC	ipu	This clock pin is synchronous to the MDIO data pin.		
			MII mode:	MII Receive Data Output[3] ⁽²⁾	
13	RXD3/ PHYAD0	lpu/O	Config mode:	The pull-up/pull-down value is latched as PHYADDR[0] at the de-assertion of reset.	
				See the "Strapping Options" section for details.	
			MII mode:	MII Receive Data Output[2] ⁽²⁾	
14	RXD2/ PHYAD1	lpd/O	Config mode:	The pull-up/pull-down value is latched as PHYADDR[1] at the de-assertion of reset.	
				See the "Strapping Options" section for details.	
			MII mode:	MII Receive Data Output[1] ⁽²⁾	
15	RXD1/ PHYAD2	lpd/O	Config mode:	The pull-up/pull-down value is latched as PHYADDR[2] at the de-assertion of reset.	
				See the "Strapping Options" section for details.	

Notes:

1. P = Power supply.

Gnd = Ground.

I = Input.

O = Output.

I/O = Bi-directional.

Ipu = Input with internal pull-up (see "Electrical Characteristics" for value).

Ipu/O = Input with internal pull-up (see "Electrical Characteristics" for value) during power-up/reset; output pin otherwise.

Ipd/O = Input with internal pull-down (see "Electrical Characteristics" for value) during power-up/reset; output pin otherwise.

Ipu/Opu = Input with internal pull-up (see "Electrical Characteristics" for value) and output with internal pull-up (see "Electrical Characteristics" for value).

2. MII RX Mode: The RXD[3:0] bits are synchronous with RXC. When RXDV is asserted, RXD[3:0] presents valid data to the MAC. RXD[3:0] is invalid data from the PHY when RXDV is de-asserted.

Pin Description – KSZ8081MNX (Continued)

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function	
			MII mode:	MII Receive Data Output[0] ⁽²⁾
16	RXD0/ DUPLEX	lpu/O	Config mode:	The pull-up/pull-down value is latched as DUPLEX at the de-assertion of reset.
				See the "Strapping Options" section for details.
17	VDDIO	Р	3.3V, 2.5V, or 1.8	8V digital V _{DD}
			MII mode:	MII Receive Data Valid output
18	RXDV/ CONFIG2	lpd/O	Config mode:	The pull-up/pull-down value is latched as CONFIG2 at the de-assertion of reset.
				See the "Strapping Options" section for details.
			MII mode:	MII Receive Clock output
19	RXC/ B-CAST_OFF	lpd/O	Config mode:	The pull-up/pull-down value is latched as B-CAST_OFF at the de-assertion of reset.
				See the "Strapping Options" section for details.
			MII mode:	MII Receive Error output
20	RXER/ ISO	lpd/O	Config mode:	The pull-up/pull-down value is latched as ISOLATE at the de-assertion of reset.
				See the "Strapping Options" section for details.
			Interrupt output:	Programmable interrupt output
21	INTRP/	lpu/Opu	This pin has a weak pull-up, is open-drain, and requires an external $1.0k\Omega$ pull-up resistor.	
21	NAND_Tree#		Config mode:	The pull-up/pull-down value is latched as NAND Tree# at the de-assertion of reset.
				See the "Strapping Options" section for details
			MII mode:	MII Transmit Clock output
22	TXC	lpd/O		on of reset, this pin needs to latch in a pull-down value for normal C side pulls this pin high, see Register 16h, Bit [15] for solution.
23	TXEN	I	MII mode:	MII Transmit Enable input
24	TXD0	I	MII mode:	MII Transmit Data Input[0] ⁽³⁾
25	TXD1	I	MII mode:	MII Transmit Data Input[1] ⁽³⁾
26	TXD2	I	MII mode:	MII Transmit Data Input[2] ⁽³⁾
27	TXD3	I	MII Mode:	MII Transmit Data Input[3] ⁽³⁾
			MII mode:	MII Collision Detect output
28	COL/ CONFIG0	lpd/O	Config mode:	The pull-up/pull-down value is latched as CONFIG0 at the de-assertion of reset.
				See the "Strapping Options" section for details.
			MII mode:	MII Carrier Sense output
29	CRS/ CONFIG1	Ipd/O	Config mode:	The pull-up/pull-down value is latched as CONFIG1 at the de-assertion of reset.
	_			See the "Strapping Options" section for details.

Note:

3. MII TX Mode: The TXD[3:0] bits are synchronous with TXC. When TXEN is asserted, TXD[3:0] presents valid data from the MAC. TXD[3:0] has no effect on the PHY when TXEN is de-asserted.

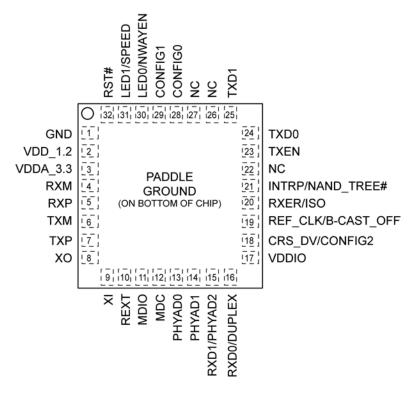
Pin Description – KSZ8081MNX (Continued)

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function			
			LED output:	Programmable LE	D0 output	
				Latched as auto-n de-assertion of res	egotiation enable (regis	ster 0h, bit [12]) at the
				See the "Strapping	options" section for de	etails.
			The LED0 pin is p	rogrammable usin	g register 1Fh bits [5:4]], and is defined as follows
			LED mode = [0	00]]
			Link/Activity	Pin State	LED Definition	
00	LED0/	In (O	No link	High	OFF	
30	NWAYEN	lpu/O	Link	Low	ON	
			Activity	Toggle	Blinking	
			LED mode = [0	01]		7
			Link	Pin State	LED Definition	
			No link	High	OFF	
			Link	Low	ON	
			Config mode: Latched as Speed (register 0h, bit [13]) at the de-assertion of reset. See the "Strapping Options" section for details.			
			The LED1 pin is p	rogrammable usin	g register 1Fh bits [5:4]], and is defined as follows
		ED1/ PEED Ipu/O	LED mode = [00]]
			Speed	Pin State	LED Definition	
31			10Base-T	High	OFF	
	SPEED		100Base-TX	Low	ON	
			LED mode = [0	01]]
			LED mode = [0 Activity	01] Pin State	LED Definition	
					LED Definition	
			Activity	Pin State		-
			Activity No activity Activity	Pin State High Toggle	OFF Blinking	-
32	RST#	lpu	Activity No activity	Pin State High Toggle 0], [11]	OFF Blinking	

Strapping Options – KSZ8081MNX

The strap-in pins are latched at the de-assertion of reset. In some systems, the MAC MII receive input pins may drive high/low during power-up or reset, and consequently cause the PHY strap-in pins on the MII signals to be latched to unintended high/low states. In this case, external pull-ups ($4.7k\Omega$) or pull-downs ($1.0k\Omega$) should be added on these PHY strap-in pins to ensure that the intended values are strapped-in correctly.

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function				
15	PHYAD2	lpd/O	PHYAD[2:0] is latched at de-assertion of reset and is configurable to any value from 0 to 7 with PHY Address 1 as the default value.				
13	PHYAD1	lpd/O	PHY Address 0 is assigned by default as the broadcast PHY address, but it can be				
13	PHYAD0	lpu/O	assigned as a unique PHY address after pulling the B-CAST_OFF strapping pin high or writing a '1' to register 16h, bit [9].				
10	THINDO	ipu/O	PHY Address bits [4:3] are set to 00 by default.				
			The CONFIG[2:0] strap-in pins are latched at the de-assertion of reset.				
18	CONFIG2	lpd/O	CONFIG[2:0]	Mode			
29	CONFIG2 CONFIG1	lpd/O	000	MII (default)			
29	CONFIG0	lpd/O	110	MII back-to-back			
20	CONTIGU	ipu/O	001 – 101, 111	Reserved – not used			
				Reserved – not used			
			Isolate mode				
20	ISO	Ipd/O	Pull-up = Enable Pull-down (default) = Disable				
				eset, this pin value is latched into regi	star 0h. hit [10]		
			Speed mode				
			Pull-up (default) = 100Mbps				
04	00550	lpu/O	Pull-down = 10Mbps				
31	SPEED		At the de-assertion of reset, this pin value is latched into register 0h, bit [13] as the				
			speed select, and also is latched into register 4h (auto-negotiation advertisement) as the speed capability support.				
			Duplex mode				
16	DUPLEX	lpu/O	Pull-up (default) = Half-duplex				
10	DOILEX	ipu/O	Pull-down = Full-duplex				
			At the de-assertion of r	eset, this pin value is latched into regi	ster 0h, bit [8].		
			Nway auto-negotiation	enable			
30	NWAYEN	lpu/O	Pull-up (default) = Enable auto-negotiation				
50	NWATEN	ipu/O	Pull-down = Disable auto-negotiation				
			At the de-assertion of reset, this pin value is latched into register 0h, bit [12].				
			Broadcast off – for PH	Address 0			
19	B-CAST_OFF	lpd/O	Pull-up = PHY Address 0 is set as an unique PHY address				
15	0,101_011	ipu/O	Pull-down (default) = PHY Address 0 is set as a broadcast PHY address				
			At the de-assertion of r	eset, this pin value is latched by the c	hip.		
			NAND tree mode				
21	NAND_Tree#	lpu/Opu	Pull-up (defau				
21	1	.pu, opu	Pull-down = E				
			At the de-assertion of reset, this pin value is latched by the chip.				


Note:

1. Ipu/O = Input with internal pull-up (see "Electrical Characteristics" for value) during power-up/reset; output pin otherwise.

Ipd/O = Input with internal pull-down (see "Electrical Characteristics" for value) during power-up/reset; output pin otherwise.

Ipu/Opu = Input with internal pull-up (see "Electrical Characteristics" for value) and output with internal pull-up (see "Electrical Characteristics" for value).

Pin Configuration – KSZ8081RNB

32-Pin (5mm x 5mm) QFN

Pin Description – KSZ8081RNB

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function		
1	GND	Gnd	Ground		
2		Р	1.2V core V _{DD} (power supplied by KSZ8081RNB)		
2	VDD_1.2	F	Decouple with 2.2µF and 0.1µF capacitors to ground.		
3	VDDA_3.3	Р	3.3V analog V _{DD}		
4	RXM	I/O	Physical receive or transmit signal (- differential)		
5	RXP	I/O	Physical receive or transmit signal (+ differential)		
6	TXM	I/O	Physical transmit or receive signal (- differential)		
7	TXP	I/O	Physical transmit or receive signal (+ differential)		
8	ХО	0	Crystal feedback for 25MHz crystal		
0	χ0	0	This pin is a no connect if an oscillator or external clock source is used.		
9	XI		25MHz Mode: 25MHz ±50ppm Crystal / Oscillator / External Clock Input		
3	Л	I	50MHz Mode: 50MHz ±50ppm Oscillator / External Clock Input		
10	REXT		Set PHY transmit output current		
10	NEXT		Connect a 6.49k Ω resistor to ground on this pin.		
			Management Interface (MII) Data I/O		
11	MDIO	lpu/Opu	This pin has a weak pull-up, is open-drain, and requires an external $1.0 \mbox{k}\Omega$ pull-up resistor.		
12	MDC	lpu	Management Interface (MII) Clock input		
12	MDC	ipu	This clock pin is synchronous to the MDIO data pin.		
13	PHYAD0	lpu/O	The pull-up/pull-down value is latched as PHYADDR[0] at the de-assertion of reset. See the "Strapping Options" section for details.		
14	PHYAD1	lpd/O	The pull-up/pull-down value is latched as PHYADDR[1] at the de-assertion of reset. See the "Strapping Options" section for details.		
			RMII mode: RMII Receive Data Output[1] ⁽²⁾		
15	RXD1/ PHYAD2	lpd/O	Config mode: The pull-up/pull-down value is latched as PHYADDR[2] at the de-assertion of reset.		
			See the "Strapping Options" section for details.		
			RMII mode: RMII Receive Data Output[0] ⁽²⁾		
16	RXD0/ DUPLEX	lpu/O	Config mode: The pull-up/pull-down value is latched as DUPLEX at the de-assertion of reset.		
			See the "Strapping Options" section for details.		

Notes:

1. P = Power supply.

Gnd = Ground.

I = Input.

O = Output.

I/O = Bi-directional.

Ipu = Input with internal pull-up (see "Electrical Characteristics" for value).

Ipu/O = Input with internal pull-up (see "Electrical Characteristics" for value) during power-up/reset; output pin otherwise.

Ipd/O = Input with internal pull-down (see "Electrical Characteristics" for value) during power-up/reset; output pin otherwise.

Ipu/Opu = Input with internal pull-up (see "Electrical Characteristics" for value) and output with internal pull-up (see "Electrical Characteristics" for value).

NC = Pin is not bonded to the die.

2. RMII RX Mode: The RXD[1:0] bits are synchronous with the 50MHz RMII Reference Clock. For each clock period in which CRS_DV is asserted, two bits of recovered data are sent by the PHY to the MAC.

Pin Description – KSZ8081RNB (Continued)

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function		
17	VDDIO	Р	3.3V, 2.5V, or 1.	8V digital V _{DD}	
			RMII mode:	RMII Carrier Sense/Receive Data Valid output /	
18	CRS_DV/ CONFIG2	Ipd/O	Config mode:	The pull-up/pull-down value is latched as CONFIG2 at the de-assertion of reset.	
				See the "Strapping Options" section for details.	
	REF_CLK/		RMII mode:	25MHz mode: This pin provides the 50MHz RMII reference clock output to the MAC. See also XI (pin 9).	
19		lpd/O		50MHz mode: This pin is a no connect. See also XI (pin 9).	
19	B-CAST_OFF	ipu/O	Config mode:	The pull-up/pull-down value is latched as B-CAST_OFF at the de-assertion of reset.	
				See the "Strapping Options" section for details.	
			RMII mode:	RMII Receive Error output	
20	RXER/ ISO	lpd/O	Config mode:	The pull-up/pull-down value is latched as ISOLATE at the de-assertion of reset.	
				See the "Strapping Options" section for details.	
			Interrupt output:	Programmable interrupt output	
21	INTRP/			reak pull-up, is open-drain, and requires an external 1.0k Ω pull-up	
21	NAND_Tree#	lpu/Opu	Config mode:	The pull-up/pull-down value is latched as NAND Tree# at the de-assertion of reset.	
				See the "Strapping Options" section for details.	
22	NC	-	No connect – Th	nis pin is not bonded and can be left floating.	
23	TXEN	-	RMII Transmit E	nable input	
24	TXD0	I	RMII Transmit D	Data Input[0] ⁽³⁾	
25	TXD1	I	RMII Transmit D	RMII Transmit Data Input[1] ⁽³⁾	
26	NC	-	No connect – This pin is not bonded and can be left floating.		
27	NC	-	No connect – This pin is not bonded and can be left floating.		
28	CONFIG0	Ipd/O	The pull-up/pull-down value is latched as CONFIG0 at the de-assertion of reset. See the "Strapping Options" section for details.		
29	CONFIG1	lpd/O	The pull-up/pull- the "Strapping C	down value is latched as CONFIG1 at the de-assertion of reset. See Options" section for details.	

Note:

3. RMII TX Mode: The TXD[1:0] bits are synchronous with the 50MHz RMII Reference Clock. For each clock period in which TXEN is asserted, two bits of data are received by the PHY from the MAC.

Pin Description – KSZ8081RNB (Continued)

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function			
			LED output:	Programmable LE	D0 output	
				Latched as auto-ned as auto-ned as auto-ned assertion of res	egotiation enable (regis set.	ster 0h, bit [12]) at the
				See the "Strapping	options" section for d	etails.
			The LED0 pin is p	rogrammable usin	g register 1Fh bits [5:4]], and is defined as follows
			LED mode = [0	00]]
			Link/Activity	Pin State	LED Definition	
	LED0/		No link	High	OFF	
30	NWAYEN	lpu/O	Link	Low	ON	
			Activity	Toggle	Blinking	
			LED mode = [0	01]]
			Link	Pin State	LED Definition	
			No link	High	OFF	
			Link	Low	ON	
					g Options" section for d a reaister 1Fh bits [5:4	etails.], and is defined as follows
					g · · g.· · · · · · · · · · · · · · · ·	יייייייייייייייייייייייייייייייייייייי
			LED mode = [0	-	<i></i>	_
	LED1/		Speed	Pin State	LED Definition	_
31	SPEED	lpu/O	10Base-T	High	OFF	_
			100Base-TX	Low	ON	
			LED mode = [0	LED mode = [01]		
			Activity	Pin State	LED Definition	
			No activity	High	OFF	
						1
			Activity	Toggle	Blinking	
			LED mode = [10		1 -	
32	RST#	lpu), [11] Reserved	1 -	

Strapping Options – KSZ8081RNB

The strap-in pins are latched at the de-assertion of reset. In some systems, the MAC RMII receive input pins may drive high/low during power-up or reset, and consequently cause the PHY strap-in pins on the RMII signals to be latched to unintended high/low states. In this case, external pull-ups ($4.7k\Omega$) or pull-downs ($1.0k\Omega$) should be added on these PHY strap-in pins to ensure that the intended values are strapped-in correctly.

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function			
15	PHYAD2	lpd/O	PHYAD[2:0] is latched at de-a to 7 with PHY Address 1 as th	assertion of reset and is configuration default value.	ble to any value from 0	
14	PHYAD1	lpd/O	PHY Address 0 is assigned by default as the broadcast PHY address, but it can be			
13	PHYAD0	lpu/O	assigned as a unique PHY address after pulling the B-CAST_OFF strapping pin high or writing a '1' to register 16h, bit [9].			
10	THINDO	ipu/O	PHY Address bits [4:3] are set to 00 by default.			
			The CONFIG[2:0] strap-in pins are latched at the de-assertion of reset.		f reset	
18	CONFIG2	lpd/O	CONFIG[2:0]	Mode		
29	CONFIG2 CONFIG1	lpd/O	001	RMII	-	
29	CONFIG1 CONFIG0	Ipd/O	101	RMII back-to-back	_	
20	CONFIGU	ipu/O	000, 010 – 100, 110, 111	Reserved – not used	_	
				Reserved – not used		
			Isolate mode			
20	ISO	Ipd/O	Pull-up = Enable	Disable		
			Pull-down (default) = Disable At the de-assertion of reset, this pin value is latched into register 0h, bit [10].			
			Speed mode			
			Pull-up (default) = 10	0Mbps		
		Ipu/O	Pull-down = 10Mbps			
31	SPEED		·			
		At the de-assertion of reset, this pin value is latched into register 0h, bit [13] as the speed select, and also is latched into register 4h (auto-negotiation advertisement the speed capability support.				
			Duplex mode			
10	DUPLEX	Inu/O	Pull-up (default) = H	alf-duplex		
16	DUPLEX	lpu/O	Pull-down = Full-dup	lex		
			At the de-assertion of reset, the	nis pin value is latched into registe	r 0h, bit [8].	
			Nway auto-negotiation enable)		
30	NWAYEN	lpu/O	Pull-up (default) = E	nable auto-negotiation		
	INVATEN	ipu/O	Pull-down = Disable auto-negotiation			
			At the de-assertion of reset, the	nis pin value is latched into registe	r 0h, bit [12].	
			Broadcast off – for PHY Addr	ess 0		
19	B-CAST_OFF	lpd/O	Pull-up = PHY Address 0 is set as an unique PHY address			
10	0,101_011	ipu/O	Pull-down (default) = PHY Address 0 is set as a broadcast PHY address			
				nis pin value is latched by the chip		
			NAND tree mode			
21	NAND_Tree#	lpu/Opu	Pull-up (default) = D	isable		
		.r ~ op «	Pull-down = Enable			
			At the de-assertion of reset, the	nis pin value is latched by the chip		

Note:

Ipu/O = Input with internal pull-up (see "Electrical Characteristics" for value) during power-up/reset; output pin otherwise.
 Ipd/O = Input with internal pull-down (see "Electrical Characteristics" for value) during power-up/reset; output pin otherwise.
 Ipu/Opu = Input with internal pull-up (see "Electrical Characteristics" for value) and output with internal pull-up (see "Electrical Characteristics" for value) and output with internal pull-up (see "Electrical Characteristics" for value).

Functional Description: 10Base-T/100Base-TX Transceiver

The KSZ8081 is an integrated single 3.3V supply Fast Ethernet transceiver. It is fully compliant with the IEEE 802.3 Specification, and reduces board cost and simplifies board layout by using on-chip termination resistors for the two differential pairs and by integrating the regulator to supply the 1.2V core.

On the copper media side, the KSZ8081 supports 10Base-T and 100Base-TX for transmission and reception of data over a standard CAT-5 unshielded twisted pair (UTP) cable, and HP Auto MDI/MDI-X for reliable detection of and correction for straight-through and crossover cables.

On the MAC processor side, the KSZ8081MNX offers the Media Independent Interface (MII) and the KSZ8081RNB offers the Reduced Media Independent Interface (RMII) for direct connection with MII and RMII compliant Ethernet MAC processors and switches, respectively.

The MII management bus option gives the MAC processor complete access to the KSZ8081 control and status registers. Additionally, an interrupt pin eliminates the need for the processor to poll for PHY status change.

The KSZ8081MNX/RNB is used to refer to both KSZ8081MNX and KSZ8081RNB versions in this data sheet.

100Base-TX Transmit

The 100Base-TX transmit function performs parallel-to-serial conversion, 4B/5B encoding, scrambling, NRZ-to-NRZI conversion, and MLT3 encoding and transmission.

The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125MHz serial bit stream. The data and control stream is then converted into 4B/5B coding and followed by a scrambler. The serialized data is further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output. The output current is set by an external $6.49k\Omega \, 1\%$ resistor for the 1:1 transformer ratio.

The output signal has a typical rise/fall time of 4ns and complies with the ANSI TP-PMD standard regarding amplitude balance, overshoot, and timing jitter. The wave-shaped 10Base-T output is also incorporated into the 100Base-TX transmitter.

100Base-TX Receive

The 100Base-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.

The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair cable. Because the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust its characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on comparisons of incoming signal strength against some known cable characteristics, then tunes itself for optimization. This is an ongoing process and self-adjusts against environmental changes such as temperature variations.

Next, the equalized signal goes through a DC-restoration and data-conversion block. The DC-restoration circuit compensates for the effect of baseline wander and improves the dynamic range. The differential data-conversion circuit converts MLT3 format back to NRZI. The slicing threshold is also adaptive.

The clock-recovery circuit extracts the 125MHz clock from the edges of the NRZI signal. This recovered clock is then used to convert the NRZI signal to NRZ format. This signal is sent through the de-scrambler, then the 4B/5B decoder. Finally, the NRZ serial data is converted to MII format and provided as the input data to the MAC.

Scrambler/De-Scrambler (100Base-TX Only)

The scrambler spreads the power spectrum of the transmitted signal to reduce electromagnetic interference (EMI) and baseline wander. The de-scrambler recovers the scrambled signal.

10Base-T Transmit

The 10Base-T drivers are incorporated with the 100Base-TX drivers to allow for transmission using the same magnetic. The drivers perform internal wave-shaping and pre-emphasis, and output 10Base-T signals with a typical amplitude of 2.5V peak. The 10Base-T signals have harmonic contents that are at least 27dB below the fundamental frequency when driven by an all-ones Manchester-encoded signal.

10Base-T Receive

On the receive side, input buffer and level detecting squelch circuits are used. A differential input receiver circuit and a phase-locked loop (PLL) performs the decoding function. The Manchester-encoded data stream is separated into clock signal and NRZ data. A squelch circuit rejects signals with levels less than 400mV, or with short pulse widths, to prevent noise at the RXP and RXM inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL locks onto the incoming signal and the KSZ8081MNX/RNB decodes a data frame. The receive clock is kept active during idle periods between data receptions.

SQE and Jabber Function (10Base-T Only)

In 10Base-T operation, a short pulse is put out on the COL pin after each frame is transmitted. This SQE test is needed to test the 10Base-T transmit/receive path. If transmit enable (TXEN) is high for more than 20ms (jabbering), the 10Base-T transmitter is disabled and COL is asserted high. If TXEN is then driven low for more than 250ms, the 10Base-T transmitter is re-enabled and COL is de-asserted (returns to low).

PLL Clock Synthesizer

The KSZ8081MNX/RNB generates all internal clocks and all external clocks for system timing from an external 25MHz crystal, oscillator, or reference clock. For the KSZ8081RNB in RMII 50MHz clock mode, these clocks are generated from an external 50MHz oscillator or system clock.

Auto-Negotiation

The KSZ8081MNX/RNB conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3 Specification.

Auto-negotiation allows unshielded twisted pair (UTP) link partners to select the highest common mode of operation.

During auto-negotiation, link partners advertise capabilities across the UTP link to each other and then compare their own capabilities with those they received from their link partners. The highest speed and duplex setting that is common to the two link partners is selected as the mode of operation.

The following list shows the speed and duplex operation mode from highest to lowest priority.

- Priority 1: 100Base-TX, full-duplex
- Priority 2: 100Base-TX, half-duplex
- Priority 3: 10Base-T, full-duplex
- Priority 4: 10Base-T, half-duplex

If auto-negotiation is not supported or the KSZ8081MNX/RNB link partner is forced to bypass auto-negotiation, then the KSZ8081MNX/RNB sets its operating mode by observing the signal at its receiver. This is known as parallel detection, which allows the KSZ8081MNX/RNB to establish a link by listening for a fixed signal protocol in the absence of the auto-negotiation advertisement protocol.

Auto-negotiation is enabled by either hardware pin strapping (NWAYEN, pin 42) or software (register 0h, bit [12]).

By default, auto-negotiation is enabled after power-up or hardware reset. After that, auto-negotiation can be enabled or disabled by register 0h, bit [12]. If auto-negotiation is disabled, the speed is set by register 0h, bit [13], and the duplex is set by register 0h, bit [8].

The auto-negotiation link-up process is shown in Figure 1.

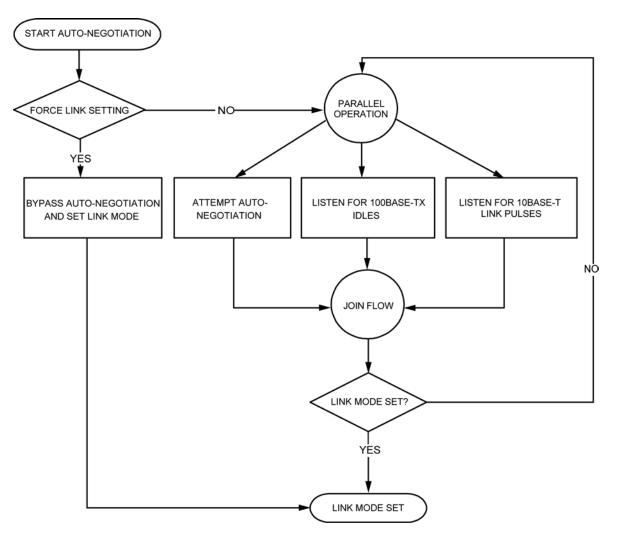


Figure 1. Auto-Negotiation Flow Chart

MII Interface (KSZ8081MNX only)

The Media Independent Interface (MII) is compliant with the IEEE 802.3 Specification. It provides a common interface between MII PHYs and MACs, and has the following key characteristics:

- Pin count is 15 pins (6 pins for data transmission, 7 pins for data reception, and 2 pins for carrier and collision indication).
- 10Mbps and 100Mbps data rates are supported at both half- and full-duplex.
- Data transmission and reception are independent and belong to separate signal groups.
- Transmit data and receive data are each 4 bits wide, a nibble.

By default, the KSZ8081MNX is configured to MII mode after it is powered up or hardware reset with the following:

- A 25MHz crystal connected to XI, XO (pins 9, 8), or an external 25MHz clock source (oscillator) connected to XI.
- The CONFIG[2:0] strapping pins (pins 18, 29, 28) set to 000 (default setting).

MII Signal Definition

Table 1 describes the MII signals. Refer to Clause 22 of the IEEE 802.3 Specification for detailed information.

MII Signal Name	Direction (with respect to PHY, KSZ8081MNX signal)	Direction (with respect to MAC)	Description
тхс	Output	Input	Transmit Clock (2.5MHz for 10Mbps; 25MHz for 100Mbps)
TXEN	Input	Output	Transmit Enable
TXD[3:0]	Input	Output	Transmit Data[3:0]
RXC	Output	Input	Receive Clock (2.5MHz for 10Mbps; 25MHz for 100Mbps)
RXDV	Output	Input	Receive Data Valid
RXD[3:0]	Output	Input	Receive Data[3:0]
RXER	Output	Input, or (not required)	Receive Error
CRS	Output	Input	Carrier Sense
COL	Output	Input	Collision Detection

Table 1. MII Signal Definition

Transmit Clock (TXC)

TXC is sourced by the PHY. It is a continuous clock that provides the timing reference for TXEN and TXD[3:0]. TXC is 2.5MHz for 10Mbps operation and 25MHz for 100Mbps operation.

Transmit Enable (TXEN)

TXEN indicates that the MAC is presenting nibbles on TXD[3:0] for transmission. It is asserted synchronously with the first nibble of the preamble and remains asserted while all nibbles to be transmitted are presented on the MII. It is negated before the first TXC following the final nibble of a frame.

TXEN transitions synchronously with respect to TXC.

Transmit Data[3:0] (TXD[3:0])

TXD[3:0] transitions synchronously with respect to TXC. When TXEN is asserted, TXD[3:0] are accepted by the PHY for transmission. TXD[3:0] is 00 to indicate idle when TXEN is de-asserted. Values other than 00 on TXD[3:0] while TXEN is de-asserted are ignored by the PHY.

Receive Clock (RXC)

RXC provides the timing reference for RXDV, RXD[3:0], and RXER.

- In 10Mbps mode, RXC is recovered from the line while the carrier is active. RXC is derived from the PHY's reference clock when the line is idle or the link is down.
- In 100Mbps mode, RXC is continuously recovered from the line. If the link is down, RXC is derived from the PHY's
 reference clock.

RXC is 2.5MHz for 10Mbps operation and 25MHz for 100Mbps operation.

Receive Data Valid (RXDV)

RXDV is driven by the PHY to indicate that the PHY is presenting recovered and decoded nibbles on RXD[3:0].

- In 10Mbps mode, RXDV is asserted with the first nibble of the start-of-frame delimiter (SFD), 5D, and remains asserted until the end of the frame.
- In 100Mbps mode, RXDV is asserted from the first nibble of the preamble to the last nibble of the frame.

RXDV transitions synchronously with respect to RXC.

Receive Data[3:0] (RXD[3:0])

RXD[3:0] transitions synchronously with respect to RXC. For each clock period in which RXDV is asserted, RXD[3:0] transfers a nibble of recovered data from the PHY.

Receive Error (RXER)

RXER is asserted for one or more RXC periods to indicate that a symbol error (for example, a coding error that a PHY can detect that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame being transferred from the PHY.

RXER transitions synchronously with respect to RXC. While RXDV is de-asserted, RXER has no effect on the MAC.

Carrier Sense (CRS)

CRS is asserted and de-asserted as follows:

- In 10Mbps mode, CRS assertion is based on the reception of valid preambles. CRS de-assertion is based on the reception of an end-of-frame (EOF) marker.
- In 100Mbps mode, CRS is asserted when a start-of-stream delimiter or /J/K symbol pair is detected. CRS is deasserted when an end-of-stream delimiter or /T/R symbol pair is detected. Additionally, the PMA layer de-asserts CRS if IDLE symbols are received without /T/R.

Collision (COL)

COL is asserted in half-duplex mode whenever the transmitter and receiver are simultaneously active on the line. This informs the MAC that a collision has occurred during its transmission to the PHY.

COL transitions asynchronously with respect to TXC and RXC.

MII Signal Diagram

The KSZ8081MNX MII pin connections to the MAC are shown in Figure 2.

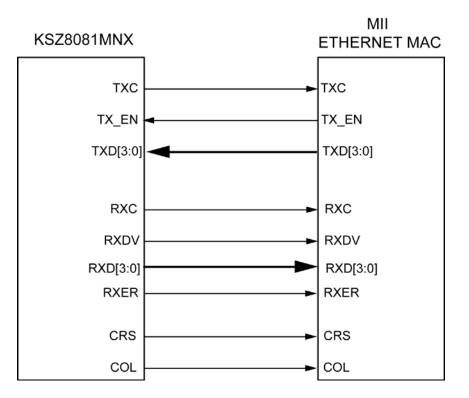


Figure 2. KSZ8081MNX MII Interface

RMII Data Interface (KSZ8081RNB only)

The Reduced Media Independent Interface (RMII) specifies a low pin count Media Independent Interface (MII). It provides a common interface between physical layer and MAC layer devices, and has the following key characteristics:

- Pin count is 8 pins (3 pins for data transmission, 4 pins for data reception, and 1 pin for the 50MHz reference clock).
- 10Mbps and 100Mbps data rates are supported at both half- and full-duplex.
- Data transmission and reception are independent and belong to separate signal groups.
- Transmit data and receive data are each 2 bits wide, a dibit.

RMII – 25MHz Clock Mode

The KSZ8081RNB is configured to RMII – 25MHz clock mode after it is powered up or hardware reset with the following:

- A 25MHz crystal connected to XI, XO (pins 9, 8), or an external 25MHz clock source (oscillator) connected to XI.
- The CONFIG[2:0] strapping pins (pins 18, 29, 28) set to 001.
- Register 1Fh, bit [7] is set to 0 (default value) to select 25MHz clock mode.

RMII – 50MHz Clock Mode

The KSZ8081RNB is configured to RMII – 50MHz clock mode after it is powered up or hardware reset with the following:

- An external 50MHz clock source (oscillator) connected to XI (pin 9).
- The CONFIG[2:0] strapping pins (pins 18, 29, 28) set to 001.
- Register 1Fh, bit [7] is set to 1 to select 50MHz clock mode.

RMII Signal Definition

Table 2 describes the RMII signals. Refer to RMII Specification v1.2 for detailed information.

RMII Signal Name	Direction (with respect to PHY, KSZ8081RNB signal)	Direction (with respect to MAC)	Description
REF_CLK	Output (25MHz clock mode) /	Input/	Synchronous 50MHz reference clock for
	<no connect=""> (50MHz clock mode)</no>	Input or <no connect=""></no>	receive, transmit, and control interface
TXEN	Input	Output	Transmit Enable
TXD[1:0]	Input	Output	Transmit Data[1:0]
CRS_DV	Output	Input	Carrier Sense/Receive Data Valid
RXD[1:0]	Output	Input	Receive Data[1:0]
RXER	Output	Input, or (not required)	Receive Error

Table 2. RMII Signal Definition

Reference Clock (REF_CLK)

REF_CLK is a continuous 50MHz clock that provides the timing reference for TXEN, TXD[1:0], CRS_DV, RXD[1:0], and RX_ER.

For 25MHz clock mode, the KSZ8081RNB generates and outputs the 50MHz RMII REF_CLK to the MAC at REF_CLK (pin 19).

For 50MHz clock mode, the KSZ8081RNB takes in the 50MHz RMII REF_CLK from the MAC or system board at XI (pin 9) and leaves the REF_CLK (pin 19) as a no connect.

Transmit Enable (TXEN)

TXEN indicates that the MAC is presenting dibits on TXD[1:0] for transmission. It is asserted synchronously with the first dibit of the preamble and remains asserted while all dibits to be transmitted are presented on the RMII. It is negated before the first REF_CLK following the final dibit of a frame.

TXEN transitions synchronously with respect to REF_CLK.

Transmit Data[1:0] (TXD[1:0])

TXD[1:0] transitions synchronously with respect to REF_CLK. When TXEN is asserted, the PHY accepts TXD[1:0] for transmission.

TXD[1:0] is 00 to indicate idle when TXEN is de-asserted. The PHY ignores values other than 00 on TXD[1:0] while TXEN is de-asserted.

Carrier Sense / Receive Data Valid (CRS_DV)

The PHY asserts CRS_DV when the receive medium is non-idle. It is asserted asynchronously when a carrier is detected. This happens when squelch is passed in 10Mbps mode, and when two non-contiguous 0s in 10 bits are detected in 100Mbps mode. Loss of carrier results in the de-assertion of CRS_DV.

While carrier detection criteria are met, CRS_DV remains asserted continuously from the first recovered dibit of the frame through the final recovered dibit. It is negated before the first REF_CLK that follows the final dibit. The data on RXD[1:0] is considered valid after CRS_DV is asserted. However, because the assertion of CRS_DV is asynchronous relative to REF_CLK, the data on RXD[1:0] is 00 until receive signals are properly decoded.

Receive Data[1:0] (RXD[1:0])

RXD[1:0] transitions synchronously with respect to REF_CLK. For each clock period in which CRS_DV is asserted, RXD[1:0] transfers two bits of recovered data from the PHY.

RXD[1:0] is 00 to indicate idle when CRS_DV is de-asserted. The MAC ignores values other than 00 on RXD[1:0] while CRS_DV is de-asserted.

Receive Error (RXER)

RXER is asserted for one or more REF_CLK periods to indicate that a symbol error (for example, a coding error that a PHY can detect that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame being transferred from the PHY.

RXER transitions synchronously with respect to REF_CLK. . While CRS_DV is de-asserted, RXER has no effect on the MAC.

Collision Detection (COL)

The MAC regenerates the COL signal of the MII from TXEN and CRS_DV.

RMII Signal Diagram

The KSZ8081RNB RMII pin connections to the MAC for 25MHz clock mode are shown in Figure 3. The connections for 50MHz clock mode are shown in Figure 4.

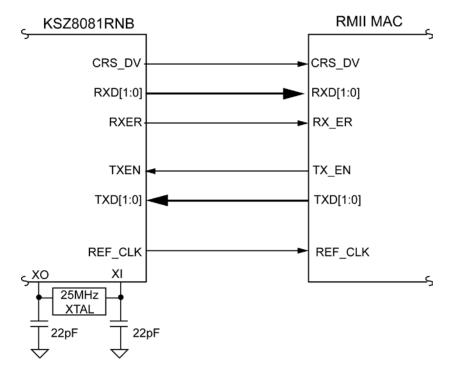
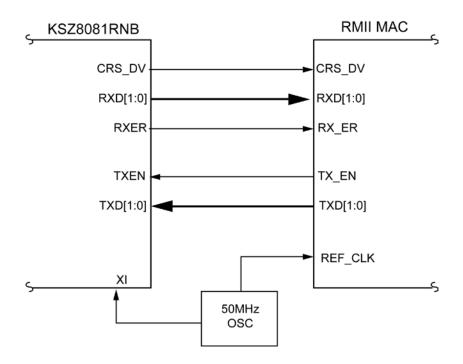



Figure 3. KSZ8081RNB RMII Interface (25MHz Clock Mode)

Back-to-Back Mode – 100Mbps Copper Repeater

Two KSZ8081MNX/RNB devices can be connected back-to-back to form a 100Base-TX copper repeater.

Figure 5. KSZ8081MNX/RNB to KSZ8081MNX/RNB Back-to-Back Copper Repeater

MII Back-to-Back Mode (KSZ8081MNX only)

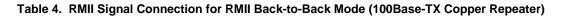
In MII back-to-back mode, a KSZ8081MNX interfaces with another KSZ8081MNX to provide a complete 100Mbps copper repeater solution.

The KSZ8081MNX devices are configured to MII back-to-back mode after power-up or reset with the following:

- Strapping pin CONFIG[2:0] (pins 18, 29, 28) set to 110
- A common 25MHz reference clock connected to XI (pin 9) of both KSZ8081MNX devices
- MII signals connected as shown in Table 3

KSZ8081MNX (100Base-TX copper) [Device 1]			KSZ8081MNX (100Base-TX copper) [Device 2]			
Pin Name	Pin Number	Pin Type	Pin Name	Pin Number	Pin Type	
RXDV	18	Output	TXEN	23	Input	
RXD3	13	Output	TXD3	27	Input	
RXD2	14	Output	TXD2	26	Input	
RXD1	15	Output	TXD1	25	Input	
RXD0	16	Output	TXD0	24	Input	
TXEN	23	Input	RXDV	18	Output	
TXD3	27	Input	RXD3	13	Output	
TXD2	26	Input	RXD2	14	Output	
TXD1	25	Input	RXD1	15	Output	
TXD0	24	Input	RXD0	16	Output	

Table 3. MII Signal Connection for MII Back-to-Back Mode (100Base-TX Copper Repeater)


RMII Back-to-Back Mode (KSZ8081RNB only)

In RMII back-to-back mode, a KSZ8081RNB interfaces with another KSZ8081RNB to provide a complete 100Mbps copper repeater solution.

The KSZ8081RNB devices are configured to RMII back-to-back mode after power-up or reset with the following:

- Strapping pin CONFIG[2:0] (pins 18, 29, 28) set to 101
- A common 50MHz reference clock connected to XI (pin 9) of both KSZ8081RNB devices
- RMII signals connected as shown in Table 4

KSZ808	KSZ8081RNB (100Base-TX copper) [Device 1]			1RNB (100Base-T [Device 2]	X copper)
Pin Name	Pin Number	Pin Type	Pin Name	Pin Number	Pin Type
CRSDV	18	Output	TXEN	23	Input
RXD1	15	Output	TXD1	25	Input
RXD0	16	Output	TXD0	24	Input
TXEN	23	Input	CRSDV	18	Output
TXD1	25	Input	RXD1	15	Output
TXD0	24	Input	RXD0	16	Output

MII Management (MIIM) Interface

The KSZ8081MNX/RNB supports the IEEE 802.3 MII management interface, also known as the Management Data Input/Output (MDIO) interface. This interface allows an upper-layer device, such as a MAC processor, to monitor and control the state of the KSZ8081MNX/RNB. An external device with MIIM capability is used to read the PHY status and/or configure the PHY settings. More details about the MIIM interface can be found in Clause 22.2.4 of the IEEE 802.3 Specification.

The MIIM interface consists of the following:

- A physical connection that incorporates the clock line (MDC) and the data line (MDIO).
- A specific protocol that operates across the physical connection mentioned earlier, which allows the external controller to communicate with one or more PHY devices.
- A set of 16-bit MDIO registers. Registers [0:8] are standard registers, and their functions are defined in the IEEE 802.3 Specification. The additional registers are provided for expanded functionality. See the "Register Map" section for details.

As the default, the KSZ8081MNX/RNB supports unique PHY addresses 1 to 7, and broadcast PHY address 0. The latter is defined in the IEEE 802.3 Specification, and can be used to read/write to a single KSZ8081MNX/RNB device, or write to multiple KSZ8081MNX/RNB devices simultaneously.

PHY address 0 can optionally be disabled as the broadcast address by either hardware pin strapping (B-CAST_OFF, pin 19) or software (register 16h, bit [9]), and assigned as a unique PHY address.

The PHYAD[2:0] strapping pins are used to assign a unique PHY address between 0 and 7 to each KSZ8081MNX/RNB device.

	Preamble	Start of Frame	Read/Write OP Code	PHY Address Bits [4:0]	REG Address Bits [4:0]	ТА	Data Bits [15:0]	Idle
Read	32 1's	01	10	00AAA	RRRRR	Z0	DDDDDDD_DDDDDDD	Z
Write	32 1's	01	01	00AAA	RRRRR	10	DDDDDDDD_DDDDDDD	Z

Table 5 shows the MII management frame format for the KSZ8081MNX/RNB.

Table 5. MII Management Frame Format for the KSZ8081MNX/RNB

Interrupt (INTRP)

INTRP (pin 21) is an optional interrupt signal that is used to inform the external controller that there has been a status update to the KSZ8081MNX/RNB PHY register. Bits [15:8] of register 1Bh are the interrupt control bits to enable and disable the conditions for asserting the INTRP signal. Bits [7:0] of register 1Bh are the interrupt status bits to indicate which interrupt conditions have occurred. The interrupt status bits are cleared after reading register 1Bh.

Bit [9] of register 1Fh sets the interrupt level to active high or active low. The default is active low.

The MII management bus option gives the MAC processor complete access to the KSZ8081MNX/RNB control and status registers. Additionally, an interrupt pin eliminates the need for the processor to poll the PHY for status change.

HP Auto MDI/MDI-X

HP Auto MDI/MDI-X configuration eliminates the need to decide whether to use a straight cable or a crossover cable between the KSZ8081MNX/RNB and its link partner. This feature allows the KSZ8081MNX/RNB to use either type of cable to connect with a link partner that is in either MDI or MDI-X mode. The auto-sense function detects transmit and receive pairs from the link partner and assigns transmit and receive pairs to the KSZ8081MNX/RNB accordingly.

HP Auto MDI/MDI-X is enabled by default. It is disabled by writing a '1' to register 1Fh, bit [13]. MDI and MDI-X mode is selected by register 1Fh, bit [14] if HP Auto MDI/MDI-X is disabled.

An isolation transformer with symmetrical transmit and receive data paths is recommended to support Auto MDI/MDI-X. Table 6 shows how the IEEE 802.3 Standard defines MDI and MDI-X.

м	DI	MD	0I-X
RJ-45 Pin	Signal	RJ-45 Pin	Signal
1	TX+	1	RX+
2	TX–	2	RX–
3	RX+	3	TX+
6	RX–	6	TX–

Table 6.	MDI/MDI-X Pin	Definition
----------	---------------	------------

Straight Cable

A straight cable connects an MDI device to an MDI-X device, or an MDI-X device to an MDI device. Figure 6 shows a typical straight cable connection between a NIC card (MDI device) and a switch or hub (MDI-X device).

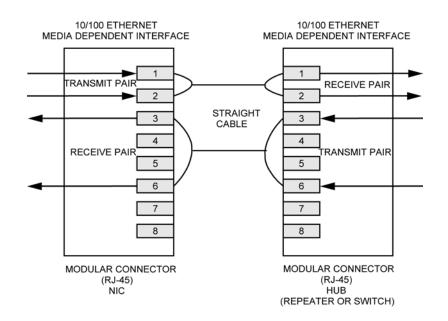


Figure 6. Typical Straight Cable Connection

Crossover Cable

A crossover cable connects an MDI device to another MDI device, or an MDI-X device to another MDI-X device. Figure 7 shows a typical crossover cable connection between two switches or hubs (two MDI-X devices).

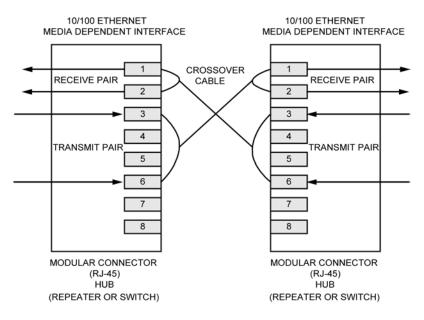


Figure 7. Typical Crossover Cable Connection

Loopback Mode

The KSZ8081MNX/RNB supports the following loopback operations to verify analog and/or digital data paths.

- Local (digital) loopback
- Remote (analog) loopback

Local (Digital) Loopback

This loopback mode checks the MII/RMII transmit and receive data paths between the KSZ8081MNX/RNB and the external MAC, and is supported for both speeds (10/100Mbps) at full-duplex.

The loopback data path is shown in Figure 8.

- 1. The MII/RMII MAC transmits frames to the KSZ8081MNX/RNB.
- 2. Frames are wrapped around inside the KSZ8081MNX/RNB.
- 3. The KSZ8081MNX/RNB transmits frames back to the MII/RMII MAC.

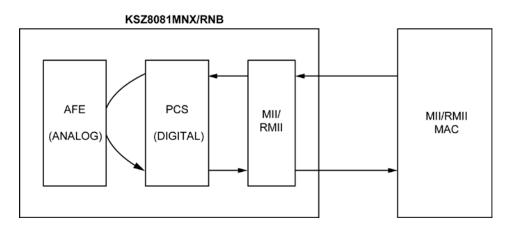


Figure 8. Local (Digital) Loopback

The following programming action and register settings are used for local loopback mode.

For 10/100Mbps loopback,

Set register 0h,

- Bit [14] = 1 // Enable local loopback mode
- Bit [13] = 0/1 // Select 10Mbps/100Mbps speed
- Bit [12] = 0 // Disable auto-negotiation
- Bit [8] = 1 // Select full-duplex mode

Remote (Analog) Loopback

This loopback mode checks the line (differential pairs, transformer, RJ-45 connector, Ethernet cable) transmit and receive data paths between the KSZ8081MNX/RNB and its link partner, and is supported for 100Base-TX full-duplex mode only. The loopback data path is shown in Figure 9.

- 1. The Fast Ethernet (100Base-TX) PHY link partner transmits frames to the KSZ8081MNX/RNB.
- 2. Frames are wrapped around inside the KSZ8081MNX/RNB.
- 3. The KSZ8081MNX/RNB transmits frames back to the Fast Ethernet (100Base-TX) PHY link partner.

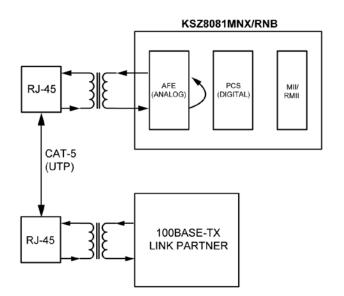


Figure 9. Remote (Analog) Loopback

The following programming steps and register settings are used for remote loopback mode.

- 1. Set Register 0h,
 - Bits [13] = 1 // Select 100Mbps speed
 - Bit [12] = 0 // Disable auto-negotiation
 - Bit [8] = 1 // Select full-duplex mode

Or just auto-negotiate and link up at 100Base-TX full-duplex mode with the link partner.

- 2. Set Register 1Fh,
 - Bit [2] = 1 // Enable remote loopback mode

LinkMD[®] Cable Diagnostic

The LinkMD function uses time-domain reflectometry (TDR) to analyze the cabling plant for common cabling problems. These include open circuits, short circuits, and impedance mismatches.

LinkMD works by sending a pulse of known amplitude and duration down the MDI or MDI-X pair, then analyzing the shape of the reflected signal to determine the type of fault. The time duration for the reflected signal to return provides the approximate distance to the cabling fault. The LinkMD function processes this TDR information and presents it as a numerical value that can be translated to a cable distance.

LinkMD is initiated by accessing register 1Dh, the LinkMD Control/Status register, in conjunction with register 1Fh, the PHY Control 2 register. The latter register is used to disable Auto MDI/MDI-X and to select either MDI or MDI-X as the cable differential pair for testing.

NAND Tree Support

The KSZ8081MNX/RNB provides parametric NAND tree support for fault detection between chip I/Os and board. The NAND tree is a chain of nested NAND gates in which each KSZ8081MNX/RNB digital I/O (NAND tree input) pin is an input to one NAND gate along the chain. At the end of the chain, the CRS/CONFIG1 pin provides the output for the nested NAND gates.

The NAND tree test process includes:

- Enabling NAND tree mode
- Pulling all NAND tree input pins high
- Driving each NAND tree input pin low, sequentially, according to the NAND tree pin order
- Checking the NAND tree output to make sure there is a toggle high-to-low or low-to-high for each NAND tree input driven low

Table 7 and Table 8 list the NAND tree pin orders for KSZ8081MNX and KSZ8081RNB, respectively.

Pin Number	Pin Name	NAND Tree Description
11	MDIO	Input
12	MDC	Input
13	RXD3	Input
14	RXD2	Input
15	RXD1	Input
16	RXD0	Input
18	RXDV	Input
19	RXC	Input
20	RXER	Input
21	INTRP	Input
22	TXC	Input
23	TXEN	Input
24	TXD0	Input
25	TXD1	Input
26	TXD2	Input
27	TXD3	Input
30	LED0	Input
31	LED1	Input
28	COL	Input
29	CRS	Output

Table 7. NAND Tree Test Pin Order for KSZ8081MNX

Pin Number	Pin Name	NAND Tree Description
11	MDIO	Input
12	MDC	Input
13	PHYAD0	Input
14	PHYAD1	Input
15	RXD1	Input
16	RXD0	Input
18	CRS_DV	Input
19	REF_CLK	Input
20	RXER	Input
21	INTRP	Input
23	TXEN	Input
24	TXD0	Input
25	TXD1	Input
30	LED0	Input
31	LED1	Input
28	CONFIG0	Input
29	CONFIG1	Output

 Table 8. NAND Tree Test Pin Order for KSZ8081RNB

NAND Tree I/O Testing

Use the following procedure to check for faults on the KSZ8081MNX/RNB digital I/O pin connections to the board:

- 1. Enable NAND tree mode using either hardware (NAND_Tree#, pin 21) or software (register 16h, bit [5]).
- 2. Use board logic to drive all KSZ8081MNX/RNB NAND tree input pins high.
- 3. Use board logic to drive each NAND tree input pin, in KSZ8081MNX/RNB NAND tree pin order, as follows:
 - a. Toggle the first pin (MDIO) from high to low, and verify that the CRS/CONFIG1 pin switches from high to low to indicate that the first pin is connected properly.
 - b. Leave the first pin (MDIO) low.
 - c. Toggle the second pin (MDC) from high to low, and verify that the CRS/CONFIG1 pin switches from low to high to indicate that the second pin is connected properly.
 - d. Leave the first pin (MDIO) and the second pin (MDC) low.
 - e. Toggle the third pin (RXD3/PHYAD0)) from high to low, and verify that the CRS/CONFIG1 pin switches from high to low to indicate that the third pin is connected properly.
 - f. Continue with this sequence until all KSZ8081MNX/RNB NAND tree input pins have been toggled.

Each KSZ8081MNX/RNB NAND tree input pin must cause the CRS/CONFIG1 output pin to toggle high-to-low or low-tohigh to indicate a good connection. If the CRS pin fails to toggle when the KSZ8081MNX/RNB input pin toggles from high to low, the input pin has a fault.

Power Management

The KSZ8081MNX/RNB incorporates a number of power-management modes and features that provide methods to consume less energy. These are discussed in the following sections.

Power-Saving Mode

Power-saving mode is used to reduce the transceiver power consumption when the cable is unplugged. It is enabled by writing a '1' to register 1Fh, bit [10], and is in effect when auto-negotiation mode is enabled and the cable is disconnected (no link).

In this mode, the KSZ8081MNX/RNB shuts down all transceiver blocks, except for the transmitter, energy detect, and PLL circuits.

By default, power-saving mode is disabled after power-up.

Energy-Detect Power-Down Mode

Energy-detect power-down (EDPD) mode is used to further reduce transceiver power consumption when the cable is unplugged. It is enabled by writing a '0' to register 18h, bit [11], and is in effect when auto-negotiation mode is enabled and the cable is disconnected (no link).

EDPD mode works with the PLL off (set by writing a '1' to register 10h, bit [4] to automatically turn the PLL off in EDPD mode) to turn off all KSZ8081MNX/RNB transceiver blocks except the transmitter and energy-detect circuits.

Power can be reduced further by extending the time interval between transmissions of link pulses to check for the presence of a link partner. The periodic transmission of link pulses is needed to ensure the KSZ8081MNX/RNB and its link partner, when operating in the same low-power state and with Auto MDI/MDI-X disabled, can wake up when the cable is connected between them.

By default, energy-detect power-down mode is disabled after power-up.

Power-Down Mode

Power-down mode is used to power down the KSZ8081MNX/RNB device when it is not in use after power-up. It is enabled by writing a '1' to register 0h, bit [11].

In this mode, the KSZ8081MNX/RNB disables all internal functions except the MII management interface. The KSZ8081MNX/RNB exits (disables) power-down mode after register 0h, bit [11] is set back to '0'.

Slow-Oscillator Mode

Slow-oscillator mode is used to disconnect the input reference crystal/clock on XI (pin 8) and select the on-chip slow oscillator when the KSZ8081MNX/RNB device is not in use after power-up. It is enabled by writing a '1' to register 11h, bit [5].

Slow-oscillator mode works in conjunction with power-down mode to put the KSZ8081MNX/RNB device in the lowest power state, with all internal functions disabled except the MII management interface. To properly exit this mode and return to normal PHY operation, use the following programming sequence:

- 1. Disable slow-oscillator mode by writing a '0' to register 11h, bit [5].
- 2. Disable power-down mode by writing a '0' to register 0h, bit [11].
- 3. Initiate software reset by writing a '1' to register 0h, bit [15].

Reference Circuit for Power and Ground Connections

The KSZ8081MNX/RNB is a single 3.3V supply device with a built-in regulator to supply the 1.2V core. The power and ground connections are shown in Figure 10 and Table 9 for 3.3V VDDIO.

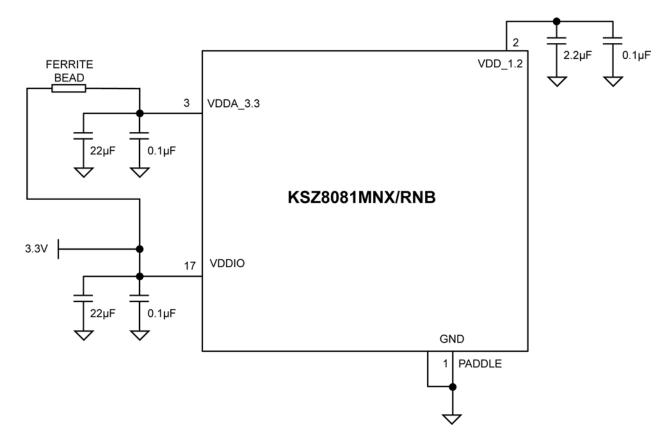


Figure 10. KSZ8081MNX/RNB Power and Ground Connections

Power Pin	Pin Number	Description
VDD_1.2	2	Decouple with $2.2\mu F$ and $0.1\mu F$ capacitors to ground.
	2	Connect to board's 3.3V supply through a ferrite bead.
VDDA_3.3	3	Decouple with $22\mu F$ and $0.1\mu F$ capacitors to ground.
	17	Connect to board's 3.3V supply for 3.3V VDDIO.
VDDIO	17	Decouple with 22 μ F and 0.1 μ F capacitors to ground.

Table 9.	KSZ8081MNX/RNB	Power Pin	Description
----------	----------------	------------------	-------------

Typical Current/Power Consumption

Table 10 through Table 12 show typical values for current consumption by the transceiver (VDDA_3.3) and digital I/O (VDDIO) power pins and typical values for power consumption by the KSZ8081MNX/RNB device for the indicated nominal operating voltages. These current and power consumption values include the transmit driver current and on-chip regulator current for the 1.2V core.

Transceiver	(3.3V),	Digital	l/Os	(3.3V)
-------------	---------	---------	------	--------

Condition	3.3V Transceiver (VDDA_3.3)	3.3V Digital I/Os (VDDIO)	Total Chip Power
	mA	mA	mW
100Base-TX Link-up (no traffic)	34	12	152
100Base-TX Full-duplex @ 100% utilization	34	13	155
10Base-T Link-up (no traffic)	14	11	82.5
10Base-T Full-duplex @ 100% utilization	30	11	135
Power-saving mode (Reg. 1Fh, bit [10] = 1)	14	10	79.2
EDPD mode (Reg. 18h, bit [11] = 0)	10	10	66.0
EDPD mode (Reg. 18h, bit [11] = 0) and PLL off (Reg. 10h, bit [4] = 1)	3.77	1.54	17.5
Software power-down mode (Reg. 0h, bit [11] =1)	2.59	1.51	13.5
Software power-down mode (Reg. 0h, bit [11] =1) and slow-oscillator mode (Reg. 11h, bit [5] =1)	1.36	0.45	5.97

Table 10. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 3.3V)

Transceiver (3.3V), Digital I/Os (2.5V)

Condition	3.3V Transceiver (VDDA_3.3)	2.5V Digital I/Os (VDDIO)	Total Chip Power
	mA	mA	mW
100Base-TX Link-up (no traffic)	34	11	140
100Base-TX Full-duplex @ 100% utilization	34	12	142
10Base-T Link-up (no traffic)	15	10	74.5
10Base-T Full-duplex @ 100% utilization	27	10	114
Power-saving mode (Reg. 1Fh, bit [10] = 1)	15	10	74.5
EDPD mode (Reg. 18h, bit [11] = 0)	11	10	61.3
EDPD mode (Reg. 18h, bit [11] = 0) and PLL off (Reg. 10h, bit [4] = 1)	3.55	1.35	15.1
Software power-down mode (Reg. 0h, bit [11] =1)	2.29	1.34	10.9
Software power-down mode (Reg. 0h, bit [11] =1) and slow-oscillator mode (Reg. 11h, bit [5] =1)	1.15	0.29	4.52

Table 11. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 2.5V)

Transceiver (3.3V), Digital I/Os (1.8V)

Condition	3.3V Transceiver (VDDA_3.3)	1.8V Digital I/Os (VDDIO)	Total Chip Power
	mA	mA	mW
100Base-TX Link-up (no traffic)	34	11	132
100Base-TX Full-duplex @ 100% utilization	34	12	134
10Base-T Link-up (no traffic)	15	9.0	65.7
10Base-T Full-duplex @ 100% utilization	27	9.0	105
Power-saving mode (Reg. 1Fh, bit [10] = 1)	15	9.0	65.7
EDPD mode (Reg. 18h, bit [11] = 0)	11	9.0	52.5
EDPD mode (Reg. 18h, bit [11] = 0) and PLL off (Reg. 10h, bit [4] = 1)	4.05	1.21	15.5
Software power-down mode (Reg. 0h, bit [11] =1)	2.79	1.21	11.4
Software power-down mode (Reg. 0h, bit [11] =1) and slow-oscillator mode (Reg. 11h, bit [5] =1)	1.65	0.19	5.79

Table 12. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 1.8V)

Register Map

Register Number (Hex)	Description
0h	Basic Control
1h	Basic Status
2h	PHY Identifier 1
3h	PHY Identifier 2
4h	Auto-Negotiation Advertisement
5h	Auto-Negotiation Link Partner Ability
6h	Auto-Negotiation Expansion
7h	Auto-Negotiation Next Page
8h	Link Partner Next Page Ability
9h	Reserved
10h	Digital Reserved Control
11h	AFE Control 1
12h – 14h	Reserved
15h	RXER Counter
16h	Operation Mode Strap Override
17h	Operation Mode Strap Status
18h	Expanded Control
19h – 1Ah	Reserved
1Bh	Interrupt Control/Status
1Ch	Reserved
1Dh	LinkMD Control/Status
1Eh	PHY Control 1
1Fh	PHY Control 2

Register Description

Address	Name	Description	Mode ⁽¹⁾	Default	
Register 0h – Basic Control					
0.15	Reset	 1 = Software reset 0 = Normal operation This bit is self-cleared after a '1' is written to it. 	RW/SC	0	
0.14	Loopback	1 = Loopback mode 0 = Normal operation	RW	0	
0.13	Speed Select	1 = 100Mbps 0 = 10Mbps This bit is ignored if auto-negotiation is enabled (register 0.12 = 1).	RW	Set by the SPEED strapping pin. See the "Strapping Options" section for details.	
0.12	Auto- Negotiation Enable	 1 = Enable auto-negotiation process 0 = Disable auto-negotiation process If enabled, the auto-negotiation result overrides the settings in registers 0.13 and 0.8. 	RW	Set by the NWAYEN strapping pin. See the "Strapping Options" section for details.	
0.11	Power-Down	 1 = Power-down mode 0 = Normal operation If software reset (register 0.15) is used to exit power-down mode (register 0.11 = 1), two software reset writes (register 0.15 = 1) are required. The first write clears power-down mode; the second write resets the chip and relatches the pin strapping pin values. 	RW	0	
0.10	Isolate	1 = Electrical isolation of PHY from MII/RMII 0 = Normal operation	RW	Set by the ISO strapping pin. See the "Strapping Options" section for details.	
0.9	Restart Auto- Negotiation	 1 = Restart auto-negotiation process 0 = Normal operation. This bit is self-cleared after a '1' is written to it. 	RW/SC	0	
0.8	Duplex Mode	1 = Full-duplex 0 = Half-duplex	RW	The inverse of the DUPLEX strapping pin value. See the "Strapping Options" section for details.	
0.7	Collision Test	1 = Enable COL test 0 = Disable COL test	RW	0	
0.6:0	Reserved	Reserved	RO	000_0000	

Note:

1. RW = Read/Write.

RO = Read only.

SC = Self-cleared.

LH = Latch high. LL = Latch low.

Address	Name	Description	Mode ⁽¹⁾	Default
Register 1h -	Basic Status			
1.15	100Base-T4	1 = T4 capable 0 = Not T4 capable	RO	0
1.14	100Base-TX Full-Duplex	1 = Capable of 100Mbps full-duplex0 = Not capable of 100Mbps full-duplex	RO	1
1.13	100Base-TX Half-Duplex	1 = Capable of 100Mbps half-duplex0 = Not capable of 100Mbps half-duplex	RO	1
1.12	10Base-T Full-Duplex	1 = Capable of 10Mbps full-duplex0 = Not capable of 10Mbps full-duplex	RO	1
1.11	10Base-T Half-Duplex	1 = Capable of 10Mbps half-duplex0 = Not capable of 10Mbps half-duplex	RO	1
1.10:7	Reserved	Reserved	RO	000_0
1.6	No Preamble	1 = Preamble suppression0 = Normal preamble	RO	1
1.5	Auto- Negotiation Complete	1 = Auto-negotiation process completed0 = Auto-negotiation process not completed	RO	0
1.4	Remote Fault	1 = Remote fault 0 = No remote fault	RO/LH	0
1.3	Auto- Negotiation Ability	1 = Can perform auto-negotiation0 = Cannot perform auto-negotiation	RO	1
1.2	Link Status	1 = Link is up 0 = Link is down	RO/LL	0
1.1	Jabber Detect	1 = Jabber detected0 = Jabber not detected (default is low)	RO/LH	0
1.0	Extended Capability	1 = Supports extended capability registers	RO	1
Register 2h –	PHY Identifier 1			
2.15:0	PHY ID Number	Assigned to the 3rd through 18th bits of the Organizationally Unique Identifier (OUI). KENDIN Communication's OUI is 0010A1 (hex).	RO	0022h
Register 3h -	PHY Identifier 2			
3.15:10	PHY ID Number	Assigned to the 19th through 24th bits of the Organizationally Unique Identifier (OUI). KENDIN Communication's OUI is 0010A1 (hex).	RO	0001_01
3.9:4	Model Number	Six-bit manufacturer's model number	RO	01_0110
3.3:0	Revision Number	Four-bit manufacturer's revision number	RO	Indicates silicon revision

Address	Name	Description	Mode ⁽¹⁾	Default
Register 4h -	- Auto-Negotiatio	n Advertisement		
4.15	Next Page	1 = Next page capable0 = No next page capability	RW	0
4.14	Reserved	Reserved	RO	0
4.13	Remote Fault	1 = Remote fault supported 0 = No remote fault	RW	0
4.12	Reserved	Reserved	RO	0
4.11:10	Pause	 [00] = No pause [10] = Asymmetric pause [01] = Symmetric pause [11] = Asymmetric and symmetric pause 	RW	00
4.9	100Base-T4	1 = T4 capable 0 = No T4 capability	RO	0
4.8	100Base-TX Full-Duplex	1 = 100Mbps full-duplex capable 0 = No 100Mbps full-duplex capability	RW	Set by the SPEED strapping pin. See the "Strapping Options" section for details.
4.7	100Base-TX Half-Duplex	1 = 100Mbps half-duplex capable 0 = No 100Mbps half-duplex capability	RW	Set by the SPEED strapping pin. See the "Strapping Options" section for details.
4.6	10Base-T Full-Duplex	1 = 10Mbps full-duplex capable 0 = No 10Mbps full-duplex capability	RW	1
4.5	10Base-T Half-Duplex	1 = 10Mbps half-duplex capable0 = No 10Mbps half-duplex capability	RW	1
4.4:0	Selector Field	[00001] = IEEE 802.3	RW	0_0001
Register 5h -	- Auto-Negotiatio	n Link Partner Ability		
5.15	Next Page	1 = Next page capable0 = No next page capability	RO	0
5.14	Acknowledge	1 = Link code word received from partner0 = Link code word not yet received	RO	0
5.13	Remote Fault	1 = Remote fault detected 0 = No remote fault	RO	0
5.12	Reserved	Reserved	RO	0
5.11:10	Pause	 [00] = No pause [10] = Asymmetric pause [01] = Symmetric pause [11] = Asymmetric and symmetric pause 	RO	00
5.9	100Base-T4	1 = T4 capable 0 = No T4 capability	RO	0
5.8	100Base-TX Full-Duplex	1 = 100Mbps full-duplex capable 0 = No 100Mbps full-duplex capability	RO	0

Address	Name	Description	Mode ⁽¹⁾	Default
Register 5h -	Auto-Negotiation	n Link Partner Ability		
5.7	100Base-TX Half-Duplex	1 = 100Mbps half-duplex capable 0 = No 100Mbps half-duplex capability	RO	0
5.6	10Base-T Full-Duplex	1 = 10Mbps full-duplex capable0 = No 10Mbps full-duplex capability	RO	0
5.5	10Base-T Half-Duplex	1 = 10Mbps half-duplex capable0 = No 10Mbps half-duplex capability	RO	0
5.4:0	Selector Field	[00001] = IEEE 802.3	RO	0_0001
Register 6h -	Auto-Negotiation	n Expansion		
6.15:5	Reserved	Reserved	RO	0000_0000_000
6.4	Parallel Detection Fault	1 = Fault detected by parallel detection0 = No fault detected by parallel detection	RO/LH	0
6.3	Link Partner Next Page Able	 1 = Link partner has next page capability 0 = Link partner does not have next page capability 	RO	0
6.2	Next Page Able	 1 = Local device has next page capability 0 = Local device does not have next page capability 	RO	1
6.1	Page Received	1 = New page received 0 = New page not received yet	RO/LH	0
6.0	Link Partner Auto- Negotiation Able	 1 = Link partner has auto-negotiation capability 0 = Link partner does not have auto-negotiation capability 	RO	0
Register 7h -	Auto-Negotiation	n Next Page		
7.15	Next Page	1 = Additional next pages will follow 0 = Last page	RW	0
7.14	Reserved	Reserved	RO	0
7.13	Message Page	1 = Message page 0 = Unformatted page	RW	1
7.12	Acknowledge2	1 = Will comply with message0 = Cannot comply with message	RW	0
7.11	Toggle	 1 = Previous value of the transmitted link code word equaled logic 1 0 = Logic 0 	RO	0
7.10:0	Message Field	11-bit wide field to encode 2048 messages	RW	000_0000_0001

Address	Name	Description	Mode ⁽¹⁾	Default
Register 8h -	Link Partner Nex	kt Page Ability		
8.15	Next Page	1 = Additional next pages will follow 0 = Last page	RO	0
8.14	Acknowledge	1 = Successful receipt of link word0 = No successful receipt of link word	RO	0
8.13	Message Page	1 = Message page 0 = Unformatted page	RO	0
8.12	Acknowledge2	1 = Can act on the information0 = Cannot act on the information	RO	0
8.11	Toggle	 1 = Previous value of transmitted link code word equal to logic 0 0 = Previous value of transmitted link code word equal to logic 1 	RO	0
8.10:0	Message Field	11-bit wide field to encode 2048 messages	RO	000_0000_0000
Register 10h	- Digital Reserve	ed Control		
10.15:5	Reserved	Reserved	RW	0000_0000_000
10.4	PLL Off	1 = Turn PLL off automatically in EDPD mode 0 = Keep PLL on in EDPD mode. See also register 18h, bit [11] for EDPD mode	RW	0
10.3:0	Reserved	Reserved	RW	0000
Register 11h	- AFE Control 1			
11.15:6	Reserved	Reserved	RW	0000_0000_00
11.5	Slow-Oscillator Mode Enable	Slow-oscillator mode is used to disconnect the input reference crystal/clock on the XI pin and select the on-chip slow oscillator when the KSZ8081MNX/RNB device is not in use after power-up. 1 = Enable 0 = Disable This bit automatically sets software power-down to the analog side when enabled.	RW	0
11.4:0	Reserved	Reserved	RW	0_000
Register 15h	– RXER Counter			
15.15:0	RXER Counter	Receive error counter for symbol error frames	RO/SC	0000h
Register 16h	- Operation Mod	e Strap Override		
16.15	Reserved Factory Mode	If TXC (Pin 22) latches in a pull-up value at the de-assertion of reset, write a '0' to this bit to clear Reserved Factory Mode.	RW	Set by the pull-up / pull-down value of TXC (Pin 22).
16.14:11	Reserved	This bit applies only to KSZ8081MNX, Reserved	RW	000_0
16.10	Reserved	Reserved	RO	0
16.9	B-CAST_OFF Override	1 = Override strap-in for B-CAST_OFF If bit is '1', PHY Address 0 is non-broadcast.	RW	0

Address	Name	Description	Mode ⁽¹⁾	Default
Register 16h	- Operation Mod	e Strap Override		
16.8	Reserved	Reserved	RW	0
16.7	MII B-to-B Override	1 = Override strap-in for MII back-to-back mode (also set bit 0 of this register to '1')	RW	0
		This bit applies only to KSZ8081MNX.		
16.6	RMII B-to-B Override	1 = Override strap-in for RMII Back-to-Back mode (also set bit 1 of this register to '1')	RW	0
		This bit applies only to KSZ8081RNB.		
16.5	NAND Tree Override	1 = Override strap-in for NAND tree mode	RW	0
16.4:2	Reserved	Reserved	RW	0_00
16.1	RMII Override	1 = Override strap-in for RMII mode	RW	0
		This bit applies only to KSZ8081RNB.		
16.0	MII Override	1 = Override strap-in for MII mode This bit applies only to KSZ8081MNX.	RW	1
Register 17h	– Operation Mod		1 1	
		[000] = Strap to PHY Address 0 [001] = Strap to PHY Address 1		
	PHYAD[2:0]	[010] = Strap to PHY Address 2	RO	
		[011] = Strap to PHY Address 3		
17.15:13	Strap-In Status	[100] = Strap to PHY Address 4		
		[101] = Strap to PHY Address 5		
		[110] = Strap to PHY Address 6		
		[111] = Strap to PHY Address 7		
17.12:10	Reserved	Reserved	RO	
17.9	B-CAST_OFF Strap-In Status	1 = Strap to B-CAST_OFF If bit is '1', PHY Address 0 is non-broadcast.	RO	
17.8	Reserved	Reserved	RO	
17.7	MII B-to-B Strap-In Status	1 = Strap to MII back-to-back mode This bit applies only to KSZ8081MNX.	RO	
17.6	RMII B-to-B Strap-In Status	1 = Strap to RMII Back-to-Back mode This bit applies only to KSZ8081RNB.	RO	
17.5	NAND Tree Strap-In Status	1 = Strap to NAND tree mode	RO	
17.4:2	Reserved	Reserved	RO	
17.1	RMII Strap-In Status	1 = Strap to RMII mode This bit applies only to KSZ8081RNB.	RO	
17.0	MII Strap-In Status	1 = Strap to MII mode This bit applies only to KSZ8081MNX.	RO	

Address	Name	Description	Mode ⁽¹⁾	Default
Register 18h	- Expanded Cont	rol		
18.15:12	Reserved	Reserved	RW	0000
		Energy-detect power-down mode		
18.11	EDPD	1 = Disable	RW	1
10.11	Disabled	0 = Enable	RVV	1
		See also register 10h, bit [4] for PLL off.		
		1 = MII output is random latency		
	100Base-TX	0 = MII output is fixed latency		
18.10	Latency	For both settings, all bytes of received preamble are passed to the MII output.	RW	0
		This bit applies only to KSZ8081MNX.		
18.9:7	Reserved	Reserved	RW	00_0
		1 = Restore received preamble to MII output		
18.6	10Base-T Preamble Restore	0 = Remove all seven bytes of preamble before sending frame (starting with SFD) to MII output	RW	0
		This bit applies only to KSZ8081MNX,		
18.5:0	Reserved	Reserved	RW	00_0000
Register 1Bh	- Interrupt Contr	ol/Status		
1B.15	Jabber Interrupt Enable	1 = Enable jabber interrupt 0 = Disable jabber interrupt	RW	0
1B.14	Receive Error Interrupt Enable	1 = Enable receive error interrupt0 = Disable receive error interrupt	RW	0
1B.13	Page Received Interrupt Enable	1 = Enable page received interrupt0 = Disable page received interrupt	RW	0
1B.12	Parallel Detect Fault Interrupt Enable	1 = Enable parallel detect fault interrupt0 = Disable parallel detect fault interrupt	RW	0
1B.11	Link Partner Acknowledge Interrupt Enable	 1 = Enable link partner acknowledge interrupt 0 = Disable link partner acknowledge interrupt 	RW	0
1B.10	Link-Down Interrupt Enable	1= Enable link-down interrupt 0 = Disable link-down interrupt	RW	0
1B.9	Remote Fault Interrupt Enable	1 = Enable remote fault interrupt0 = Disable remote fault interrupt	RW	0
1B.8	Link-Up Interrupt Enable	1 = Enable link-up interrupt 0 = Disable link-up interrupt	RW	0

Address	Name	Description	Mode ⁽¹⁾	Default
Register 1Bh	– Interrupt Contr	ol/Status		
1B.7	Jabber Interrupt	1 = Jabber occurred0 = Jabber did not occur	RO/SC	0
1B.6	Receive Error Interrupt	1 = Receive error occurred0 = Receive error did not occur	RO/SC	0
1B.5	Page Receive Interrupt	1 = Page receive occurred 0 = Page receive did not occur	RO/SC	0
1B.4	Parallel Detect Fault Interrupt	1 = Parallel detect fault occurred0 = Parallel detect fault did not occur	RO/SC	0
1B.3	Link Partner Acknowledge Interrupt	1 = Link partner acknowledge occurred 0 = Link partner acknowledge did not occur	RO/SC	0
1B.2	Link-Down Interrupt	1 = Link-down occurred 0 = Link-down did not occur	RO/SC	0
1B.1	Remote Fault Interrupt	1 = Remote fault occurred0 = Remote fault did not occur	RO/SC	0
1B.0	Link-Up Interrupt	1 = Link-up occurred 0 = Link-up did not occur	RO/SC	0
Register 1Dh	– LinkMD Contro	bl/Status		
1D.15	Cable Diagnostic Test Enable	 1 = Enable cable diagnostic test. After test has completed, this bit is self-cleared. 0 = Indicates cable diagnostic test (if enabled) has completed and the status information is valid for read. 	RW/SC	0
1D.14:13	Cable Diagnostic Test Result	 [00] = Normal condition [01] = Open condition has been detected in cable [10] = Short condition has been detected in cable [11] = Cable diagnostic test has failed 	RO	00
1D.12	Short Cable Indicator	1 = Short cable (<10 meter) has been detected by LinkMD	RO	0
1D.11:9	Reserved	Reserved	RW	000
1D.8:0	Cable Fault Counter	Distance to fault	RO	0_000_0000

Address	Name	Description	Mode ⁽¹⁾	Default
Register 1Eh	– PHY Control 1			
1E.15:10	Reserved	Reserved	RO	0000_00
1E.9	Enable Pause	1 = Flow control capable	RO	0
-	(Flow Control)	0 = No flow control capability	_	-
1E.8	Link Status	1 = Link is up	RO	0
		0 = Link is down		
1E.7	Polarity Status	1 = Polarity is reversed	RO	
	_	0 = Polarity is not reversed		
1E.6	Reserved	Reserved	RO	0
1E.5	MDI/MDI-X	1 = MDI-X	RO	
TL.0	State	0 = MDI		
		1 = Signal present on receive differential		
1E.4	Energy Detect	pair	RO	0
		0 = No signal detected on receive differential pair		
45.0		1 = PHY in isolate mode	514/	2
1E.3	PHY Isolate	0 = PHY in normal operation	RW	0
		[000] = Still in auto-negotiation		
		[001] = 10Base-T half-duplex		
		[010] = 100Base-TX half-duplex		000
. =	Operation	[011] = Reserved	5.0	
1E.2:0	Mode Indication	[100] = Reserved	RO	
	maloation	[101] = 10Base-T full-duplex		
		[110] = 100Base-TX full-duplex		
		[111] = Reserved		
Register 1Fh	– PHY Control 2		11	
		1 = HP Auto MDI/MDI-X mode	211	_
1F.15	HP_MDIX	0 = Micrel Auto MDI/MDI-X mode	RW	1
		When Auto MDI/MDI-X is disabled,		
		1 = MDI-X mode		
1F.14	MDI/MDI-X	Transmit on RXP,RXM (pins 5, 4) and Receive on TXP,TXM (pins 7, 6)	RW	0
	Select	0 = MDI mode		-
		Transmit on TXP,TXM (pins 7, 6) and Receive on RXP,RXM (pins 5, 4)		
	Pair Swap	1 = Disable Auto MDI/MDI-X		_
1F.13	Disable	0 = Enable Auto MDI/MDI-X	RW	0
1F.12	Reserved	Reserved	RW	0
	1		1	

Address	Name	Description	Mode ⁽¹⁾	Default
Register 1Fh	- PHY Control 2			
1F.11	Force Link	 1 = Force link pass 0 = Normal link operation This bit bypasses the control logic and allows the transmitter to send a pattern even if there is no link. 	RW	0
1F.10	Power Saving	1 = Enable power saving 0 = Disable power saving	RW	0
1F.9	Interrupt Level	1 = Interrupt pin active high0 = Interrupt pin active low	RW	0
1F.8	Enable Jabber	1 = Enable jabber counter0 = Disable jabber counter	RW	1
1F.7	RMII Reference Clock Select	 1 = RMII 50MHz clock mode; clock input to XI (pin 9) is 50MHz 0 = RMII 25MHz clock mode; clock input to XI (pin 9) is 25MHz This bit applies only to KSZ8081RNB. 	RW	0
1F.6	Reserved	Reserved	RW	0
1F.5:4	LED Mode	[00] = LED1: Speed LED0: Link/Activity [01] = LED1: Activity LED0: Link [10], [11] = Reserved	RW	00
1F.3	Disable Transmitter	1 = Disable transmitter0 = Enable transmitter	RW	0
1F.2	Remote Loopback	1 = Remote (analog) loopback is enabled 0 = Normal mode	RW	0
1F.1	Enable SQE Test	1 = Enable SQE test 0 = Disable SQE test	RW	0
1F.0	Disable Data Scrambling	1 = Disable scrambler 0 = Enable scrambler	RW	0

Absolute Maximum Ratings⁽¹⁾

Supply	Voltage	(V _{IN})
--------	---------	--------------------

(V _{DD_1.2})	0.5V to +1.8V
(V _{DDIO} , V _{DDA_3.3})	0.5V to +5.0V
Input Voltage (all inputs)	0.5V to +5.0V
Output Voltage (all outputs)	–0.5V to +5.0V
Lead Temperature (soldering, 10sec.)	260°C
Storage Temperature (T _s)	–55°C to +150°C

Operating Ratings⁽²⁾

Supply Voltage
(V _{DDIO_3.3} , V _{DDA_3.3}) +3.135V to +3.465V
(V _{DDIO 2.5})+2.375V to +2.625V
(V _{DDIO 1.8})+1.710V to +1.890V
Ambient Temperature
(T _A , Commercial)0°C to +70°C
(T _A , Industrial)–40°C to +85°C
Maximum Junction Temperature (T _J max.) 125°C
Thermal Resistance (θ_{JA})
Thermal Resistance (θ_{JC}) 6°C/W

Electrical Characteristics⁽³⁾

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
Supply C	urrent (V_{DDIO} , $V_{DDA_{3.3}} = 3.3V$) ⁽⁴⁾				•	
I _{DD1_3.3V}	10Base-T	Full-duplex traffic @ 100% utilization		41		mA
I _{DD2_3.3V}	100Base-TX	Full-duplex traffic @ 100% utilization		47		mA
IDD3_3.3V	EDPD Mode	Ethernet cable disconnected (reg. 18h.11 = 0)		20		mA
I _{DD4_3.3V}	Power-Down Mode	Software power-down (reg. 0h.11 = 1)		4		mA
CMOS Le	vel Inputs					
		$V_{DDIO} = 3.3V$	2.0			
VIH	Input High Voltage	$V_{DDIO} = 2.5V$	1.8			V
		$V_{DDIO} = 1.8V$	1.3			
		$V_{DDIO} = 3.3V$			0.8	
VIL	Input Low Voltage	$V_{DDIO} = 2.5V$			0.7	0.7 V 0.5
		V _{DDIO} = 1.8V			0.5	
IIIN	Input Current	$V_{IN} = GND \sim VDDIO$			10	μA
CMOS Le	vel Outputs					
		$V_{DDIO} = 3.3V$	2.4			
V _{OH}	Output High Voltage	$V_{DDIO} = 2.5V$	2.0			V
		V _{DDIO} = 1.8V	1.5			
		$V_{DDIO} = 3.3V$			0.4	
V _{OL}	Output Low Voltage	$V_{DDIO} = 2.5V$			0.4	V
		V _{DDIO} = 1.8V			0.3	
I _{oz}	Output Tri-State Leakage				10	μA
LED Outp	out					
ILED	Output Drive Current	Each LED pin (LED0, LED1)		8		mA

Notes:

1. Exceeding the absolute maximum rating can damage the device. Stresses greater than the absolute maximum rating can cause permanent damage to the device. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

2. The device is not guaranteed to function outside its operating rating.

3. $T_A = 25^{\circ}C$. Specification is for packaged product only.

Current consumption is for the single 3.3V supply KSZ8081MNX/RNB device only, and includes the transmit driver current and the 1.2V supply voltage (V_{DD_1.2}) that are supplied by the KSZ8081MNX/RNB.

Electrical Characteristics⁽³⁾

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
All Pull-U	p/Pull-Down Pins (including Strap	oping Pins)				
		V _{DDIO} = 3.3V	30	45	73	
pu	Internal Pull-Up Resistance	$V_{DDIO} = 2.5V$	39	61	102	kΩ
		V _{DDIO} = 1.8V	48	99	178	
		V _{DDIO} = 3.3V	26	43	79	
pd	Internal Pull-Down Resistance	$V_{DDIO} = 2.5V$	34	59	113	kΩ
		V _{DDIO} = 1.8V	53	99	200	
100Base-	TX Transmit (measured differentia	ally after 1:1 transformer)				
Vo	Peak Differential Output Voltage	100Ω termination across differential output	0.95		1.05	V
V _{IMB}	Output Voltage Imbalance	100 Ω termination across differential output			2	%
t _r , t _f	Rise/Fall Time		3		5	ns
	Rise/Fall Time Imbalance		0		0.5	ns
	Duty Cycle Distortion				±0.25	ns
	Overshoot				5	%
	Output Jitter	Peak-to-peak		0.7		ns
10Base-T	Transmit (measured differentially	/ after 1:1 transformer)				
VP	Peak Differential Output Voltage	100Ω termination across differential output	2.2		2.8	V
	Jitter Added	Peak-to-peak			3.5	ns
t _r , t _f	Rise/Fall Time			25		ns
10Base-T	Receive		I			
V _{SQ}	Squelch Threshold	5MHz square wave		400		mV
Transmitt	er – Drive Setting			1		
V _{SET}	Reference Voltage of I _{SET}	R(I _{SET}) = 6.49kΩ		0.65		V
REF_CLK	-					
		Peak-to-peak				
	50MHz RMII Clock Output Jitter	(Applies only to KSZ8081RNB in RMII – 25MHz clock mode)		300		ps
100Mbps	Mode – Industrial Applications Pa	arameters				
	Clock Phase Delay – XI Input to MII TXC Output	XI (25MHz clock input) to MII TXC (25MHz clock output) delay, referenced to rising edges of both clocks.	15	20	25	ns
		(Applies only to KSZ8081MNX in MII mode)				
		Link loss detected at receive differential inputs to PHY signal indication time for each of the following:				
t _{iir}	Link Loss Reaction (Indication) Time	1. For LED mode 00, Speed LED output changes from low (100Mbps) to high (10Mbps, default state for link-down).		4.4		μs
		2. For LED mode 01, Link LED output changes from low (link-up) to high (link-down).				
		3. INTRP pin asserts for link-down status change.				

Timing Diagrams

MII SQE Timing (10Base-T)

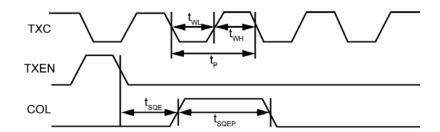


Figure 11. MII SQE Timing (10Base-T)

Timing Parameter	Description	Min.	Тур.	Max.	Unit
t _P	TXC period		400		ns
t _{WL}	TXC pulse width low		200		ns
t _{WH}	TXC pulse width high		200		ns
t _{SQE}	COL (SQE) delay after TXEN de-asserted		2.2		μs
t _{SQEP}	COL (SQE) pulse duration		1.0		μs

Table 13. MII SQE Timing (10Base-T) Parameters

MII Transmit Timing (10Base-T)

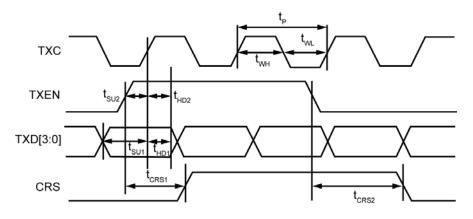


Figure 12. MII Transmit Timing (10Base-T)

Timing Parameter	Description	Min.	Тур.	Max.	Unit
t _P	TXC period		400		ns
t _{WL}	TXC pulse width low		200		ns
t _{WH}	TXC pulse width high		200		ns
t _{SU1}	TXD[3:0] setup to rising edge of TXC	120			ns
t _{SU2}	TXEN setup to rising edge of TXC	120			ns
t _{HD1}	TXD[3:0] hold from rising edge of TXC	0			ns
t _{HD2}	TXEN hold from rising edge of TXC	0			ns
t _{CRS1}	TXEN high to CRS asserted latency		600		ns
t _{CRS2}	TXEN low to CRS de-asserted latency		1.0		μs

Table 14.	MII Transmit	Timing	(10Base-T)	Parameters
-----------	--------------	--------	------------	------------

MII Receive Timing (10Base-T)

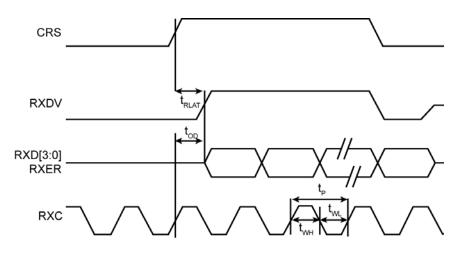


Figure 13. MII Receive Timing (10Base-T)

Timing Parameter	Description	Min.	Тур.	Max.	Unit
t _P	RXC period		400		ns
t _{WL}	RXC pulse width low		200		ns
t _{WH}	RXC pulse width high		200		ns
t _{OD}	(RXDV, RXD[3:0], RXER) output delay from rising edge of RXC		205		ns
t _{RLAT}	CRS to (RXDV, RXD[3:0]) latency		7.2		μs

Table 15.	MII Receive	Timing (10Base-T)	Parameters
-----------	-------------	-------------------	------------

MII Transmit Timing (100Base-TX)

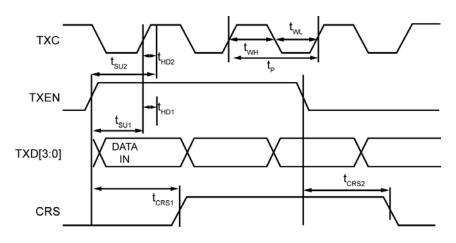


Figure 14. MII Transmit Timing (100Base-TX)

Timing Parameter	Description	Min.	Тур.	Max.	Unit
t _P	TXC period		40		ns
t _{WL}	TXC pulse width low		20		ns
t _{WH}	TXC pulse width high		20		ns
t _{SU1}	TXD[3:0] setup to rising edge of TXC	10			ns
t _{SU2}	TXEN setup to rising edge of TXC	10			ns
t _{HD1}	TXD[3:0] hold from rising edge of TXC	0			ns
t _{HD2}	TXEN hold from rising edge of TXC	0			ns
t _{CRS1}	TXEN high to CRS asserted latency		72		ns
t _{CRS2}	TXEN low to CRS de-asserted latency		72		ns

Table 16. MII Transmit Timing (100Base-TX) Parameters

MII Receive Timing (100Base-TX)

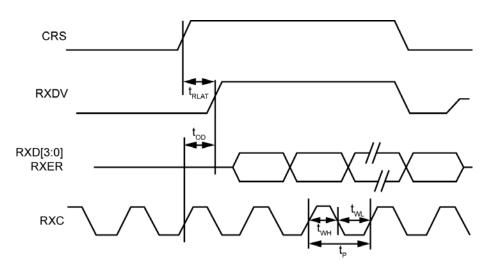


Figure 15. MII Receive Timing (100Base-TX)

Timing Parameter	Description	Min.	Тур.	Max.	Unit
tP	RXC period		40		ns
t _{WL}	RXC pulse width low		20		ns
t _{WH}	RXC pulse width high		20		ns
t _{OD}	(RXDV, RXD[3:0], RXER) output delay from rising edge of RXC		25		ns
t _{RLAT}	CRS to (RXDV, RXD[3:0] latency		170		ns

Table 17. MII Receive Timing (100Base-TX) Parameters

RMII Timing

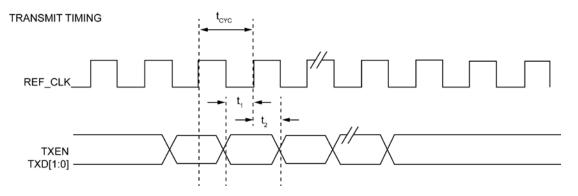


Figure 16. RMII Timing – Data Received from RMII

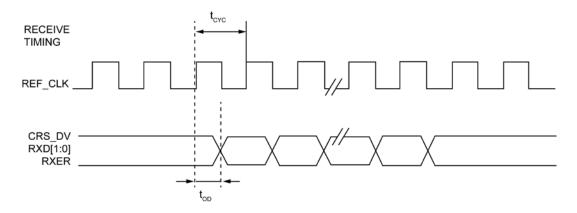


Figure 17. RMII Timing – Data Input to RMII

Timing Parameter	Description	Min.	Тур.	Max.	Unit
t _{CYC}	Clock cycle		20		ns
t ₁	Setup time	4			ns
t ₂	Hold time	2			ns
t _{OD}	Output delay	7	10	13	ns

Table 18. RMII Timing Parameters – KSZ8081RNB (25MHz input to XI pin, 50MHz output from REF_CLK pin)

Timing Parameter	Description	Min.	Тур.	Max.	Unit
t _{CYC}	Clock cycle		20		ns
t ₁	Setup time	4			ns
t ₂	Hold time	2			ns
top	Output delay	8	11	13	ns

Table 19. RMII Timing Parameters - KSZ8081RNB (50MHz input to XI pin)

Auto-Negotiation Timing

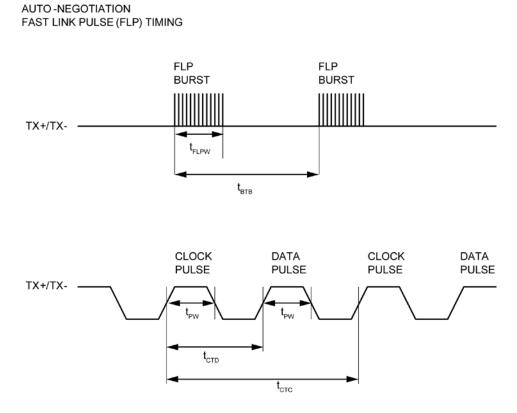
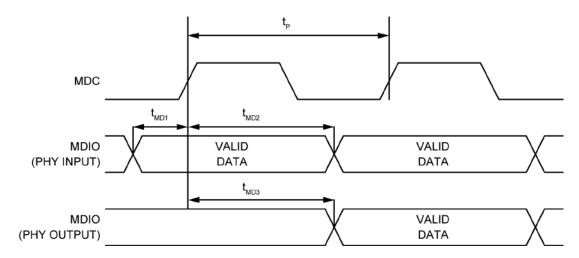
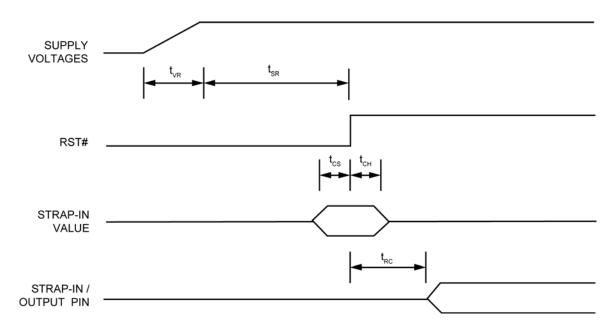



Figure 18. Auto-Negotiation Fast Link Pulse (FLP) Timing

Timing Parameter	Description	Min.	Тур.	Max.	Units
t _{втв}	FLP burst to FLP burst	8	16	24	ms
t _{FLPW}	FLP burst width		2		ms
t _{PW}	Clock/Data pulse width		100		ns
t _{CTD}	Clock pulse to data pulse	55.5	64	69.5	μs
t _{CTC}	Clock pulse to clock pulse	111	128	139	μs
	Number of clock/data pulses per FLP burst	17		33	

MDC/MDIO Timing



Timing Parameter	Description	Min.	Тур.	Max.	Unit
t _P	MDC period		400		ns
t _{MD1}	MDIO (PHY input) setup to rising edge of MDC	10			ns
t _{MD2}	MDIO (PHY input) hold from rising edge of MDC	4			ns
t _{MD3}	MDIO (PHY output) delay from rising edge of MDC	5			ns

Power-Up/Reset Timing

The KSZ8081MNX/RNB reset timing requirement is summarized in Figure 20 and Table 22.

Parameter	Description	Min.	Max.	Units
t _{VR}	Supply voltage (V _{DDIO} , V _{DDA_3.3}) rise time	300		μs
t _{SR}	Stable supply voltage (V_{DDIO} , $V_{DDA_3.3}$) to reset high	10		ms
t _{CS}	Configuration setup time	5		ns
t _{CH}	Configuration hold time	5		ns
t _{RC}	Reset to strap-in pin output	6		ns

 Table 22. Power-Up/Reset Timing Parameters

The supply voltage (V_{DDIO} and $V_{DDA_3.3}$) power-up waveform should be monotonic. The 300µs minimum rise time is from 10% to 90%.

For warm reset, the reset (RST#) pin should be asserted low for a minimum of 500µs. The strap-in pin values are read and updated at the de-assertion of reset.

After the de-assertion of reset, wait a minimum of 100µs before starting programming on the MIIM (MDC/MDIO) interface.

Reset Circuit

Figure 21 shows a reset circuit recommended for powering up the KSZ8081MNX/RNB if reset is triggered by the power supply.

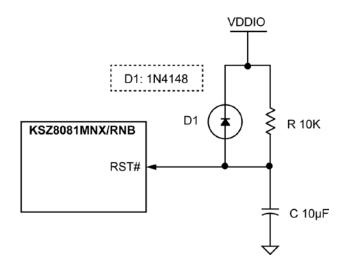
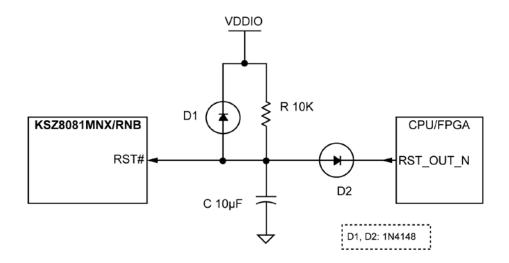
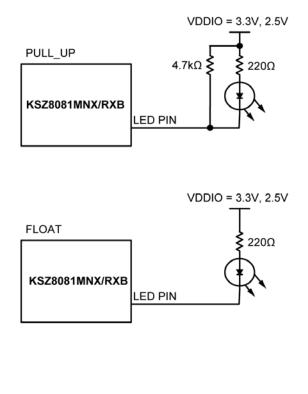
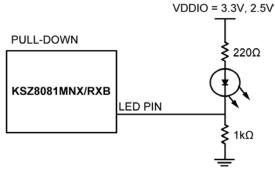
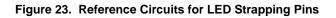


Figure 21. Recommended Reset Circuit

Figure 22 shows a reset circuit recommended for applications where reset is driven by another device (for example, the CPU or an FPGA). At power-on-reset, R, C, and D1 provide the necessary ramp rise time to reset the KSZ8081MNX/RNB device. The RST_OUT_N from the CPU/FPGA provides the warm reset after power-up.


Figure 22. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output

Reference Circuits – LED Strap-In Pins

The pull-up, float, and pull-down reference circuits for the LED1/SPEED and LED0/NWAYEN strapping pins are shown in Figure 23 for 3.3V and 2.5V VDDIO.

For 1.8V VDDIO, LED indication support is not recommended due to the low voltage. Without the LED indicator, the SPEED and NWAYEN strapping pins are functional with a $4.7k\Omega$ pull-up to 1.8V VDDIO or float for a value of '1', and with a $1.0k\Omega$ pull-down to ground for a value of '0'.

Reference Clock – Connection and Selection

A crystal or external clock source, such as an oscillator, is used to provide the reference clock for the KSZ8081MNX/RNB. For the KSZ8081MNX in all operating modes and for the KSZ8081RNB in RMII – 25MHz Clock Mode, the reference clock is 25MHz. The reference clock connections to XI (pin 9) and XO (pin 8), and the reference clock selection criteria, are provided in Figure 24 and Table 23.

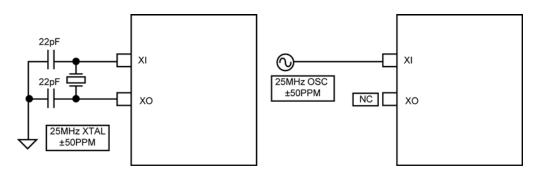


Figure 24. 25MHz Crystal/Oscillator Reference Clock Connection

Characteristics	Value	Units
Frequency	25	MHz
Frequency tolerance (max.)	±50	ppm
Crystal series resistance (typ.)	40	Ω
Crystal load capacitance (typ.)	16	pF

Table 23. 25MHz Crystal / Reference Clock Selection Criteria

For the KSZ8081RNB in RMII – 50MHz clock mode, the reference clock is 50MHz. The reference clock connections to XI (pin 9), and the reference clock selection criteria are provided in Figure 25 and Table 24.

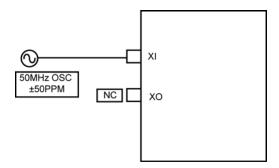


Figure 25. 50MHz Oscillator Reference Clock Connection

Characteristics	Value	Units	
Frequency	50	MHz	
Frequency tolerance (max)	±50	ppm	

Magnetic – Connection and Selection

A 1:1 isolation transformer is required at the line interface. Use one with integrated common-mode chokes for designs exceeding FCC requirements.

The KSZ8081MNX/RNB design incorporates voltage-mode transmit drivers and on-chip terminations.

With the voltage-mode implementation, the transmit drivers supply the common-mode voltages to the two differential pairs. Therefore, the two transformer center tap pins on the KSZ8081MNX/RNB side should not be connected to any power supply source on the board; instead, the center tap pins should be separated from one another and connected through separate 0.1μ F common-mode capacitors to ground. Separation is required because the common-mode voltage is different between transmitting and receiving differential pairs.

Figure 26 shows the typical magnetic interface circuit for the KSZ8081MNX/RNB.

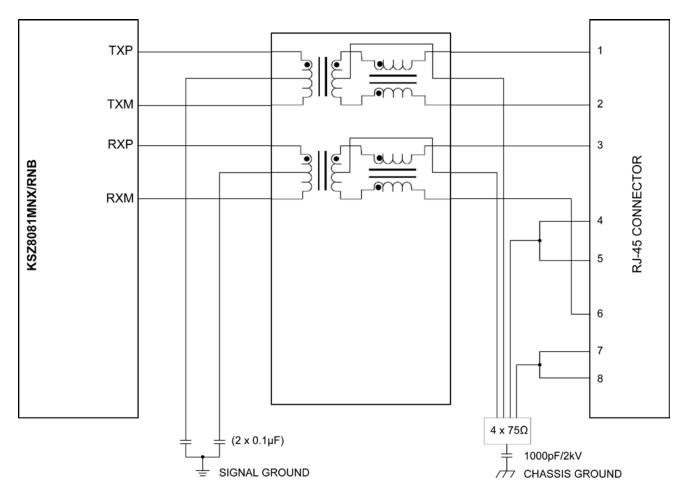


Figure 26. Typical Magnetic Interface Circuit

Table 25 lists recommended magnetic characteristics.

Parameter	Value	Test Condition
Turns ratio	1 CT : 1 CT	
Open-circuit inductance (min.)	350µH	100mV, 100kHz, 8mA
Insertion loss (typ.)	–1.1dB	100kHz to 100MHz
HIPOT (min.)	1500Vrms	

Table 25. Magnetics Selection Criteria

Table 26 is a list of compatible single-port magnetics with separated transformer center tap pins on the PHY chip side that can be used with the KSZ8081MNX/RNB.

Manufacturer	Part Number	Temperature Range	Magnetic + RJ-45
Bel Fuse	S558-5999-U7	0°C to 70°C	No
Bel Fuse	SI-46001-F	0°C to 70°C	Yes
Bel Fuse	SI-50170-F	0°C to 70°C	Yes
Delta	LF8505	0°C to 70°C	No
HALO	HFJ11-2450E	0°C to 70°C	Yes
HALO	TG110-E055N5	-40°C to 85°C	No
LANKom	LF-H41S-1	0°C to 70°C	No
Pulse	H1102	0°C to 70°C	No
Pulse	H1260	0°C to 70°C	No
Pulse	HX1188	-40°C to 85°C	No
Pulse	J00-0014	0°C to 70°C	Yes
Pulse	JX0011D21NL	-40°C to 85°C	Yes
TDK	TLA-6T718A	0°C to 70°C	Yes
Transpower	HB726	0°C to 70°C	No
Wurth/Midcom	000-7090-37R-LF1	–40°C to 85°C	No

Table 26. Compatible Single-Port 10/100 Magnetics

Recommended Land Pattern

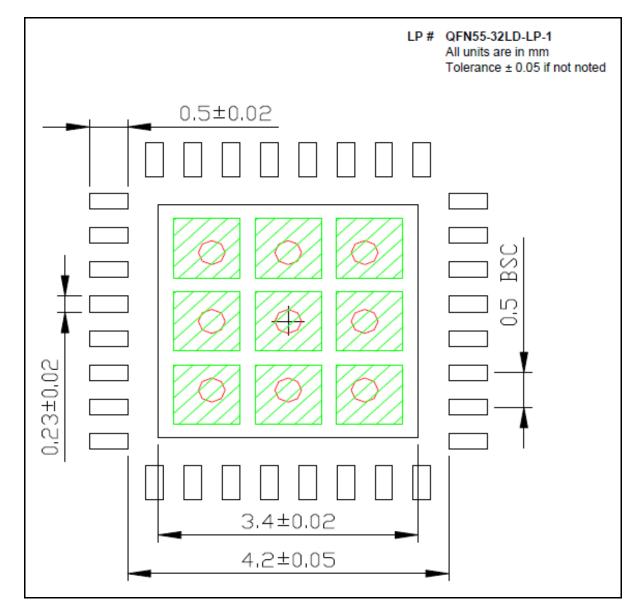
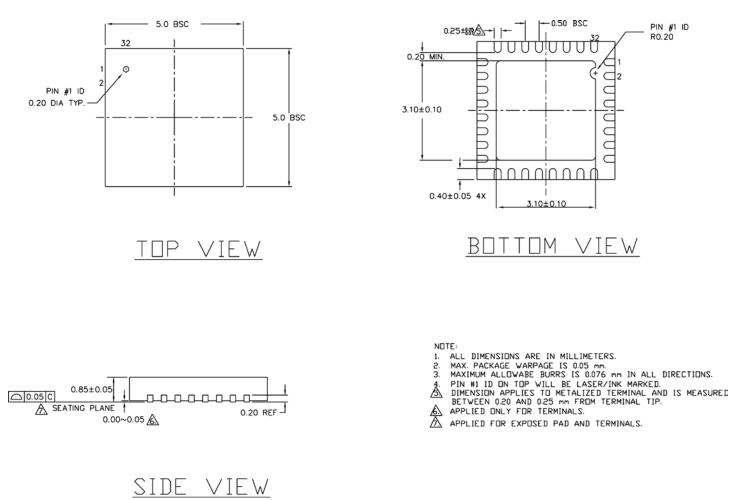



Figure 27. Recommended Land Pattern, 32-Pin (5mm x 5mm) QFN

Red circles indicate thermal vias. They should be 0.350mm in diameter and be connected to the GND plane for maximum thermal performance.

Green rectangles (with shaded area) indicate solder stencil openings on the exposed pad area. They should be 0.87 x 0.87mm in size, 1.07mm pitch.

Package Information⁽¹⁾

32-Pin (5mm × 5mm) QFN

Note:

1. Package information is correct as of the publication date. For updates and most current information, go to <u>www.micrel.com</u>.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2012 Micrel, Incorporated.