

0.58 Ω CMOS, 1.8 V to 5.5 V, Quad SPDT/2:1 Mux in Mini LFCSP

ADG858

FEATURES

0.58 Ω typical on resistance 0.82 Ω maximum on resistance at 85°C 1.8 V to 5.5 V single supply High current carrying capability: 250 mA continuous Rail-to-rail switching operation Fast-switching times: <20 ns Typical power consumption: <0.1 μ W 2.1 mm \times 2.1 mm mini LFCSP

APPLICATIONS

Cellular phones
PDAs
MP3 players
Power routing
Battery-powered systems
PCMCIA cards
Modems
Audio and video signal routing
Communication systems

GENERAL DESCRIPTION

The ADG858 is a low voltage CMOS device containing four single-pole, double-throw (SPDT) switches. This device offers ultralow on resistance of less than 0.82 Ω over the full temperature range. The ADG858 is fully specified for 4.2 V to 5.5 V and 2.7 V to 3.6 V supply operation.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG858 exhibits break-before-make switching action.

The ADG858 is available in a 2.1 mm \times 2.1 mm, 16-lead mini LFCSP. This tiny package makes the part ideal for space-constrained applications, such as handsets, PDAs, and MP3s.

FUNCTIONAL BLOCK DIAGRAM

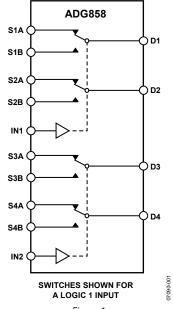


Figure 1.

PRODUCT HIGHLIGHTS

- 1. $<0.82 \Omega$ over the full temperature range of -40° C to $+85^{\circ}$ C.
- 2. Single 1.8 V to 5.5 V operation.
- 3. Compatible with 1.8 V CMOS logic.
- 4. High current handling capability (250 mA continuous current per channel).
- 5. Low THD + N: 0.06% typical.
- 6. 2.1 mm × 2.1 mm, 16-lead mini LFCSP.

TABLE OF CONTENTS

Features
Applications
Functional Block Diagram 1
General Description
Product Highlights
Revision History
Specifications
Absolute Maximum Ratings
REVISION HISTORY
8/08—Rev. 0 to Rev. A
Changes to Features Section

ESD Caution	
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	
Test Circuits	
Terminology	12
Outline Dimensions	13
Ordering Guide	13

SPECIFICATIONS

 $V_{\rm DD}$ = 4.2 V to 5.5 V, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	–40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0 \text{ to } V_{\text{DD}}$	V	
On Resistance, Ron	0.58		Ωtyp	$V_{DD} = 4.2 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA}, \text{ see Figure 16}$
	0.72	0.82	Ωmax	
On-Resistance Match Between Channels, ΔR _{ON}	0.04		Ω typ	$V_{DD} = 4.2 \text{ V}, V_S = 2 \text{ V}, I_S = 100 \text{ mA}$
		0.14	Ωmax	
On-Resistance Flatness, R _{FLAT (ON)}	0.12		Ω typ	$V_{DD} = 4.2 \text{ V}, V_S = 0 \text{ V to } V_{DD}$
		0.26	Ωmax	$I_S = 100 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = 5.5 \text{ V}$
Source Off Leakage, I _s (Off)	±10		pA typ	$V_S = 0.6 \text{ V}/4.2 \text{ V}, V_D = 4.2 \text{ V}/0.6 \text{ V}, \text{ see Figure 17}$
Channel On Leakage, ID, Is (On)	±10		pA typ	$V_S = V_D = 0.6 \text{ V or } 4.2 \text{ V, see Figure } 18$
DIGITAL INPUTS			. ,,	
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
Inl or Inh	0.004		μA typ	$V_{IN} = V_{GND}$ or V_{DD}
		0.05	μA max	
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹			. ,.	
ton	20		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	27	36	ns max	$V_S = 3 \text{ V/O V}$, see Figure 19
toff	8		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	12	13	ns max	V _s = 3 V, see Figure 19
Break-Before-Make Time Delay, tbbm	14		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
,		9	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V, see Figure 20}$
Charge Injection	45		pC typ	$V_S = 1.5 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$, see Figure 21
Off Isolation	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{pF}$, $f = 100 \text{kHz}$, see Figure 22
Channel-to-Channel Crosstalk	-85		dB typ	S1A to S2A/S1B to S2B/S3A to S4A/S3B to S4B, $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$, see Figure 25
	-67		dB typ	S1A to S1B/S2A to S2B/S3A to S3B/S4A to S4B, $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$, see Figure 24
Total Harmonic Distortion, THD + N	0.06		%	$R_L = 32 \Omega$, $f = 20 Hz$ to $20 kHz$, $V_S = 2 V p-p$
Insertion Loss	-0.05		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 23
–3 dB Bandwidth	70		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 23
C _s (Off)	25		pF typ	
C _D , C _s (On)	75		pF typ	
POWER REQUIREMENTS			, ,,	$V_{DD} = 5.5 \text{ V}$
I _{DD}	0.003		μA typ	Digital inputs = 0 V or 5.5 V
		1	μA max	

¹ Guaranteed by design, not subject to production test.

 V_{DD} = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0 \ to \ V_{DD}$	V	
On Resistance, Ron	1		Ω typ	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA}, \text{ see Figure 16}$
	1.35	1.5	Ω max	
On-Resistance Match Between Channels, ΔRoN	0.05		Ω typ	$V_{DD} = 2.7 \text{ V}, V_S = 0.7 \text{ V}, I_S = 100 \text{ mA}$
		0.15	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	0.35		Ω typ	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA}$
		0.79	Ω max	
LEAKAGE CURRENTS				V _{DD} = 3.6 V
Source Off Leakage Is (Off)	±10		pA typ	$V_S = 0.6 \text{ V}/3.3 \text{ V}, V_D = 3.3 \text{ V}/0.6 \text{ V}, \text{ see Figure 17}$
Channel On Leakage I _D , I _S (On)	±10		pA typ	$V_S = V_D = 0.6 \text{ V or } 3.3 \text{ V, see Figure } 18$
DIGITAL INPUTS				
Input High Voltage, V _{INH}		1.35	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.004		μA typ	$V_{IN} = V_{GND}$ or V_{DD}
		0.05	μA max	
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹				
t _{on}	30		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	50	59	ns max	V _S = 1.5 V/0 V, see Figure 19
t _{OFF}	9		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	14	15	ns max	V _s = 1.5 V, see Figure 19
Break-Before-Make Time Delay, t _{BBM}	25		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
ŕ		11	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V, see Figure 20}$
Charge Injection	35		pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure 21}$
Off Isolation	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$, see Figure 22
Channel-to-Channel Crosstalk	-85		dB typ	S1A to S2A/S1B to S2B/S3A to S4A/S3B to S4B, $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$, see Figure 25
	-67		dB typ	S1A to S1B/S2A to S2B/S3A to S3B/S4A to S4B, $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$, see Figure 24
Total Harmonic Distortion, THD + N	0.1		%	$R_L = 32 \Omega$, $f = 20 \text{ Hz to } 20 \text{ kHz}$, $V_S = 1.5 \text{ V p-p}$
Insertion Loss	-0.06		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 23
–3 dB Bandwidth	70		MHz typ	
C _s (Off)	25		pF typ	
C_D , C_S (On)	75		pF typ	
POWER REQUIREMENTS			· /·	V _{DD} = 3.6 V
I _{DD}	0.003		μA typ	Digital inputs = 0 V or 3.6 V
		1	μA max	,

 $^{^{\}mbox{\tiny 1}}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to GND	−0.3 V to +6 V
Analog Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Digital Inputs ¹	–0.3 V to V _{DD} or 10 mA, whichever occurs first
Peak Current, S or D	500 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current, S or D	250 mA
Operating Temperature Range	−40°C to +85°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
16-Lead Mini LFCSP	
θ_{JA} Thermal Impedance, 3-Layer Board	84.9°C/W
Reflow Soldering, Pb-Free	
Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	10 sec to 40 sec

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

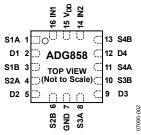


Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 3, 4, 6, 8, 10, 11, 13	S1A, S1B, S2A, S2B, S3A, S3B, S4A, S4B	Source Terminal. Can be an input or output.
2, 5, 9, 12	D1, D2, D3, D4	Drain Terminal. Can be an input or output.
7	GND	Ground (0 V) Reference.
14, 16	IN1, IN2	Logic Control Input.
15	V_{DD}	Most Positive Power Supply Potential.

Table 5. ADG858 Truth Table

Logic (IN1/IN2) Switch A (S1A/S2A/S3A/S4A)		Switch B (S1B/S2B/S3B/S4B)	
0	Off	On	
1	On	Off	

TYPICAL PERFORMANCE CHARACTERISTICS

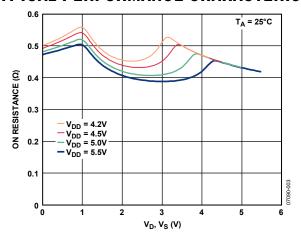


Figure 3. On Resistance vs. V_D (V_S), $V_{DD} = 4.2 \text{ V to } 5.5 \text{ V}$

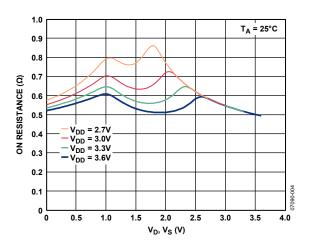


Figure 4. On Resistance vs. V_D (V_S), $V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$

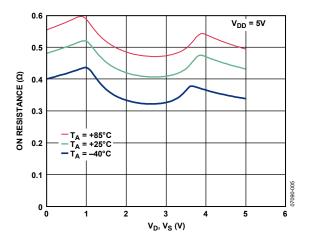


Figure 5. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 5 V$

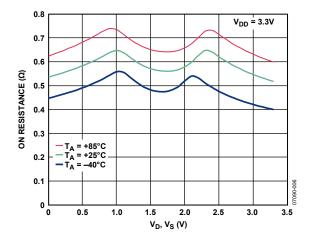


Figure 6. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 3.3 \text{ V}$

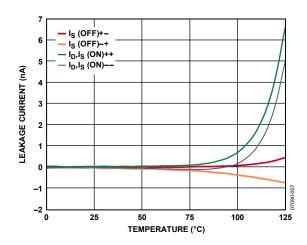


Figure 7. Leakage Current vs. Temperature, $V_{DD} = 5 V$

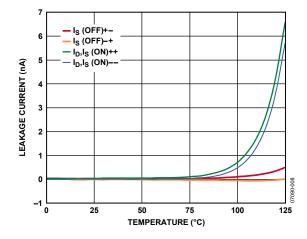


Figure 8. Leakage Current vs. Temperature, $V_{DD} = 3.3 \text{ V}$

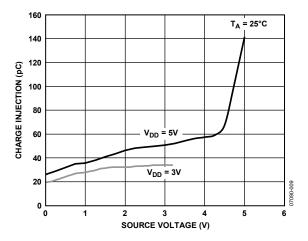


Figure 9. Charge Injection vs. Source Voltage

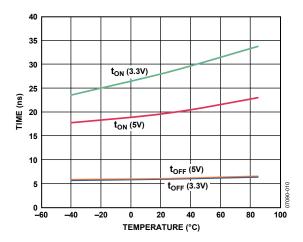


Figure 10. t_{ON}/t_{OFF} Times vs. Temperature

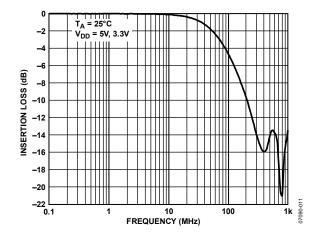


Figure 11. Bandwidth

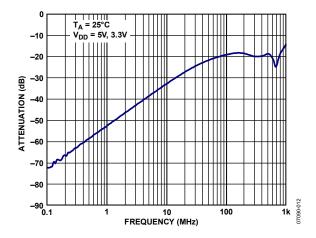


Figure 12. Off Isolation vs. Frequency

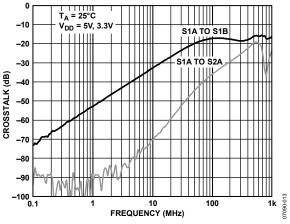


Figure 13. Crosstalk vs. Frequency

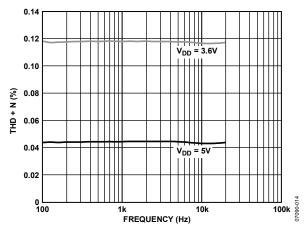


Figure 14. Total Harmonic Distortion + Noise (THD + N) vs. Frequency

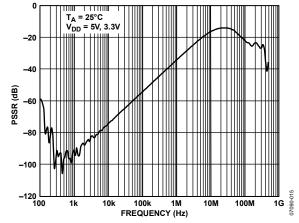


Figure 15. PSSR vs. Frequency

TEST CIRCUITS

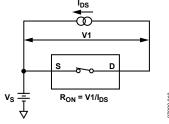
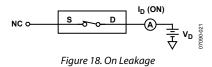



Figure 16. On Resistance

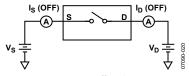


Figure 17. Off Leakage

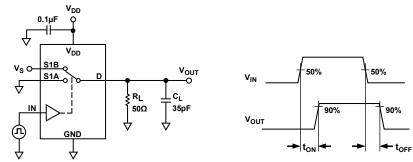


Figure 19. Switching Times, t_{ON} , t_{OFF}

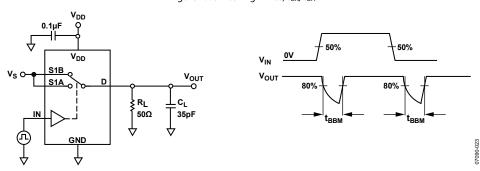


Figure 20. Break-Before-Make Time Delay, t_{BBM}

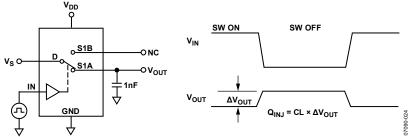


Figure 21. Charge Injection

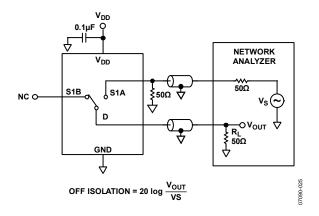


Figure 22. Off Isolation

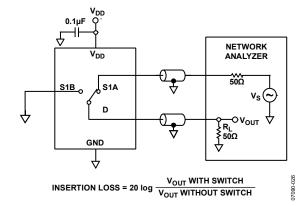


Figure 23. Bandwidth

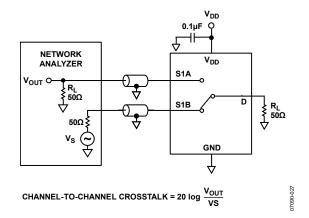


Figure 24. Channel-to-Channel Crosstalk (S1A to S1B)

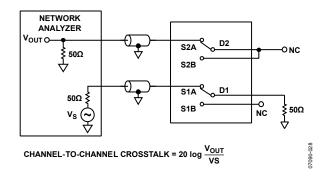


Figure 25. Channel-to-Channel Crosstalk (S1A to S2A)

TERMINOLOGY

 I_{DD}

Positive supply current.

 $V_D(V_S)$

Analog voltage on Terminal D and Terminal S.

Ron

Ohmic resistance between Terminal D and Terminal S.

R_{FLAT} (ON)

The difference between the maximum and minimum values of on resistance as measured on the switch.

 ΔR_{ON}

On resistance match between any two channels.

Is (Off)

Source leakage current with the switch off.

I_D (Off)

Drain leakage current with the switch off.

 I_D , I_S (On)

Channel leakage current with the switch on.

 V_{INL}

Maximum input voltage for Logic 0.

 V_{INH}

Minimum input voltage for Logic 1.

 $I_{INL}(I_{INH})$

Input current of the digital input.

Cs (Off)

Off switch source capacitance. Measured with reference to ground.

C_D (Off)

Off switch drain capacitance. Measured with reference to ground.

 C_D , C_S (On)

On switch capacitance. Measured with reference to ground.

 C_{IN}

Digital input capacitance.

ton

Delay time between the 50% and 90% points of the digital input and switch on condition.

toff

Delay time between the 50% and 90% points of the digital input and switch off condition.

 t_{BBN}

On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

Measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

Off Isolation

Measure of unwanted signal coupling through an off switch.

Crosstalk

Measure of unwanted signal that is coupled from one channel to another because of parasitic capacitance.

-3 dB Bandwidth

Frequency at which the output is attenuated by 3 dB.

On Response

Frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

Ratio of the harmonics amplitude plus noise of a signal to the fundamental.

OUTLINE DIMENSIONS

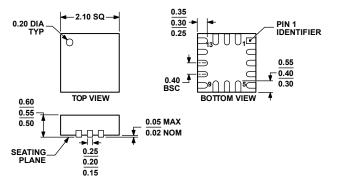


Figure 26. 16-Lead Lead Frame Chip Scale Package [LFCSP_UQ] 2.10 mm × 2.10 mm Body, Ultra Thin Quad (CP-16-15) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG858BCPZ-REEL ¹	−40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP_UQ]	CP-16-15	11
ADG858BCPZ-REEL7 ¹	−40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP_UQ]	CP-16-15	11

 $^{^{1}}$ Z = RoHS Compliant Part.

NOTES

NOTES

ADG858		

NOTES