12-stage binary ripple counter

Rev. 1 — 24 March 2014

Product data sheet

1. General description

The 74HC4040-Q100; 74HCT4040-Q100 is a 12-stage binary ripple counter with a clock input (\overline{CP}), an overriding asynchronous master reset input (MR) and twelve parallel outputs (Q0 to Q11). The counter advances on the HIGH-to-LOW transition of \overline{CP} . A HIGH on MR clears all counter stages and forces all outputs LOW, independent of the state of \overline{CP} . Each counter stage is a static toggle flip-flop. Inputs include clamp diodes that enable the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

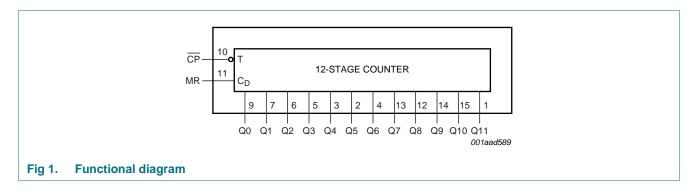
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Complies with JEDEC standard no. 7A
- Input levels:
 - For 74HC4040-Q100: CMOS level
 - ◆ For 74HCT4040-Q100: TTL level
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options

3. Applications

- Frequency dividing circuits
- Time delay circuits
- Control counters


12-stage binary ripple counter

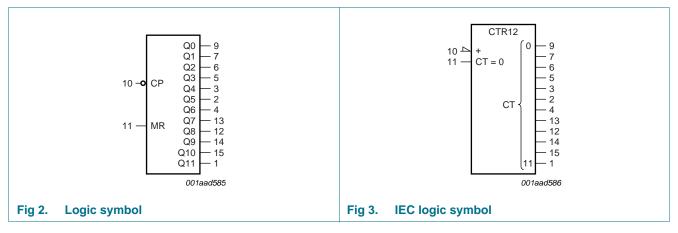
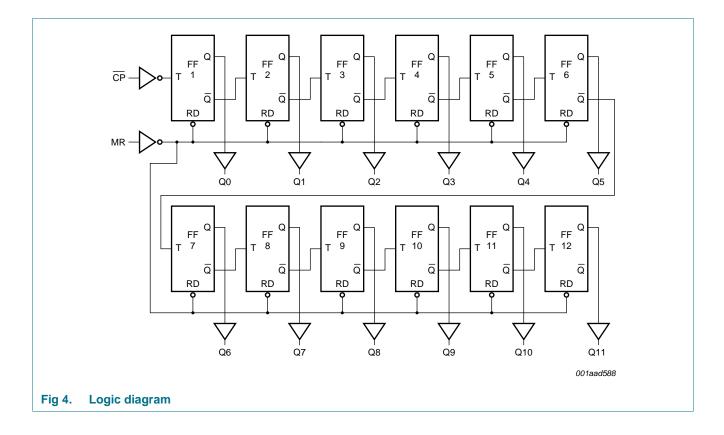

4. Ordering information

Table 1. Ordering information

Type number	Package								
	Temperature range Name		Description	Version					
74HC4040D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body	SOT109-1					
74HCT4040D-Q100			width 3.9 mm						
74HC4040DB-Q100	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads;	SOT338-1					
74HCT4040DB-Q100			body width 5.3 mm						
74HC4040PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16	SOT403-1					
74HCT4040PW-Q100			leads; body width 4.4 mm						
74HC4040BQ-Q100	–40 °C to +125 °C	DHVQFN16							
74HCT4040BQ-Q100			very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85$ mm						


5. Functional diagram

74HC_HCT4040_Q100
Product data sheet

12-stage binary ripple counter

12-stage binary ripple counter

6. Pinning information

6.1 Pinning

74HC4040-Q100 74HCT4040-Q100 Vcc <u>g</u> terminal 1 index area 74HC4040-Q100 [-] 16 74HCT4040-Q100 Q5 2) (15 Q10 Q4 3) (14 Q9 Q11 1 16 V_{CC} Q5 2 15 Q10 4) (13 Q7 Q6 Q4 3 14 Q9 Q8 Q3 5) (12 13 Q7 Q6 4 Q2 6) (11 MR GND⁽¹⁾ 12 Q8 Q3 5 Q1 7) (10 CP Q2 6 11 MR 6 ်ထ) Q1 7 10 CP GND g 9 Q0 aaa-010975 GND 8 Transparent top view aaa-010974 (1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to GND. Pin configuration SO16, SSOP16 and **Pin configuration DHVQFN16** Fig 6. Fig 5. TSSOP16

6.2 Pin description

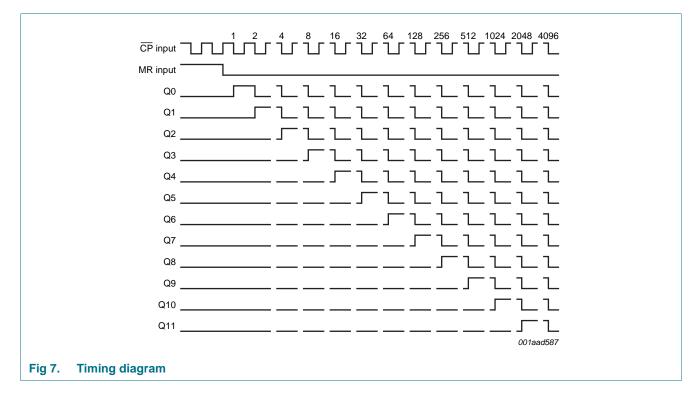
Table 2. Pin description

Symbol	Pin	Description
Q11	1	output 11
Q5	2	output 5
Q4	3	output 4
Q6	4	output 6
Q3	5	output 3
Q2	6	output 2
Q1	7	output 1
GND	8	ground (0 V)
Q0	9	output 0
CP	10	clock input (HIGH-to-LOW, edge-triggered)
MR	11	master reset input (active HIGH)
Q8	12	output 8
Q7	13	output 7
Q9	14	output 9
Q10	15	output 10
V _{CC}	16	positive supply voltage

74HC_HCT4040_Q100
Product data sheet

© NXP Semiconductors N.V. 2014. All rights reserved.

12-stage binary ripple counter


7. Functional description

7.1 Function table

Table 3. Function table						
Input Output CP MR Q0 to Q11						
СР	MR	Q0 to Q11				
\uparrow	L	no change				
\downarrow	L	count				
X	Н	L				

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; \uparrow = LOW-to-HIGH clock transition; \downarrow = HIGH-to-LOW clock transition.

7.2 Timing diagram

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	V_{I} < -0.5 V or VI > V_{CC} + 0.5 V	-	±20	mA
I _{ОК}	output clamping current	V_{I} < -0.5 V or V_{I} > V_{CC} + 0.5 V	-	±20	mA
lo	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	±50	mA
I _{GND}	ground current		-	±50	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	[1] -	500	mW

[1] For SO16, SSOP16, TSSOP16 and DHVQFN16 packages, above 70 °C, Ptot derates linearly with 8 mW/K.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74HC4040-Q100			74HC	74HCT4040-Q100		
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V

10. Static characteristics

Table 6.Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	25 °C		–40 °C to +85 °C		–40 °C to +125 °C		Unit	
			Min	Тур	Max	Min	Max	Min	Max	
74HC404	40-Q100	,								
V _{IH}		V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V

12-stage binary ripple counter

Table 6. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
V _{он}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	5.9	-	5.9	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_0 = 20 \ \mu\text{A}; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
	$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V	
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 V$	-	-	±0.1	-	±1.0	-	±1.0	μA
l _{cc}	supply current		-	-	8.0	-	80	-	160	μA
Cı	input capacitance		-	3.5	-					pF
74HCT4	040-Q100									
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -4 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 20 μA	-	0	0.1	-	0.1	-	0.1	V
		l _O = 4.0 mA	-	0.15	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_1 = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	±0.1	-	±1.0	-	±1.0	μA
l _{cc}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	8.0	-	80	-	160	μA
∆l _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}; I_O = 0 \text{ A};$ other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V								
		pin CP	-	85	306	-	383	-	417	μΑ
		pin MR	-	110	396	-	495	-	539	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

12-stage binary ripple counter

11. Dynamic characteristics

Table 7. **Dynamic characteristics**

GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit see <u>Figure 9</u>.

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC404	IO-Q100	1				1		1		
t _{pd}	propagation	CP to Q0; see Figure 8[1]								
	delay	V _{CC} = 2.0 V	-	47	150	-	190	-	225	ns
		V _{CC} = 4.5 V	-	17	30	-	38	-	45	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	14	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$	-	14	26	-	33	-	38	ns
		Qn to Qn+1; see Figure 8								
		V _{CC} = 2.0 V	-	28	100	-	125	-	150	ns
		$V_{CC} = 4.5 V$	-	10	20	-	25	-	30	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	8	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$	-	8	17	-	21	-	26	ns
t _{PHL}	HIGH to LOW	MR to Qn; see <u>Figure 8</u>								
	propagation	$V_{CC} = 2.0 V$	-	61	185	-	230	-	280	ns
	delay	$V_{CC} = 4.5 V$	-	22	37	-	46	-	56	ns
	$V_{CC} = 6.0 V$	-	18	31	-	39	-	48	ns	
t _t transition time	Qn; see Figure 8 [2]									
		$V_{CC} = 2.0 V$	-	19	75	-	95	-	110	ns
		$V_{CC} = 4.5 V$	-	7	15	-	19	-	22	ns
		$V_{CC} = 6.0 V$	-	6	13	-	16	-	19	ns
t _W	pulse width	CP input, HIGH or LOW; see Figure 8								
		$V_{CC} = 2.0 V$	80	14	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	5	-	20	-	24	-	ns
		$V_{CC} = 6.0 V$	14	4	-	17	-	20	-	ns
		MR input, HIGH; see <u>Figure 8</u>								
		$V_{CC} = 2.0 V$	80	22	-	100	-	120	-	ns
		$V_{CC} = 4.5 V$	16	8	-	20	-	24	-	ns
		$V_{CC} = 6.0 V$	14	6	-	17	-	20	-	ns
rec	recovery time	MR to CP; see Figure 8								
		V _{CC} = 2.0 V	50	8	-	65	-	75	-	ns
		$V_{CC} = 4.5 V$	10	3	-	13	-	15	-	ns
		$V_{CC} = 6.0 V$	9	2	-	11	-	13	-	ns
max	maximum	CP input; see Figure 8								1
	frequency	V _{CC} = 2.0 V	6	27	-	4.8	-	4	-	MH:
		V _{CC} = 4.5 V	30	82	-	24	-	20	-	MH
		V _{CC} = 5.0 V; C _L = 15 pF	-	90	-	-	-	-	-	MH
		V _{CC} = 6.0 V	35	98	-	28	-	24	-	MHz

74HC_HCT4040_Q100

© NXP Semiconductors N.V. 2014. All rights reserved.

Rev. 1 — 24 March 2014

12-stage binary ripple counter

Symbol	Parameter	Conditions		25 °C	;	-40 °C 1	to +85 °C	–40 °C t	o +125 °C	Unit
				Тур	Max	Min	Max	Min	Мах	
C _{PD}	power dissipation capacitance	$V_{I} = GND$ to V_{CC} [3]	-	20	-	-	-	-	-	pF
74HCT40)40-Q100									
t _{pd}	propagation	CP to Q0; see Figure 8 [1]								
	delay	$V_{CC} = 4.5 V$	-	19	40	-	50	-	60	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	16	-	-	-	-	-	ns
	Qn to Qn+1; see Figure 8									
		$V_{CC} = 4.5 V$	-	10	20	-	25	-	30	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	8	-	-	-	-	-	ns
t _{PHL} HIGH to LOW	MR to Qn; see Figure 8									
	propagation delay	V _{CC} = 4.5 V	-	23	45	-	56	-	68	ns
t _t tra	transition time	Qn; see Figure 8 [2]								
		$V_{CC} = 4.5 V$	-	7	15	-	19	-	22	ns
t _W	pulse width	CP input, HIGH or LOW; see Figure 8								
		$V_{CC} = 4.5 V$	16	7	-	20	-	24	-	ns
		MR input, HIGH; see Figure 8								
		$V_{CC} = 4.5 V$	16	6	-	20	-	24	-	ns
t _{rec}	recovery time	MR to CP; see Figure 8								
		$V_{CC} = 4.5 V$	10	2	-	13	-	15	-	ns
f _{max}	maximum	CP input; see Figure 8								
	frequency	$V_{CC} = 4.5 V$	30	72	-	24	-	20	-	MHz
		V _{CC} = 5.0 V; C _L = 15 pF	-	79	-	-	-	-	-	MHz
C _{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC} [3]	-	20	-	-	-	-	-	pF

Table 7. Dynamic characteristics ...continued

GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit see Figure 9.

 $[1] \quad t_{pd} \mbox{ is the same as } t_{PHL}, \mbox{ } t_{PLH}.$

[2] t_t is the same as t_{THL} , t_{TLH} .

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

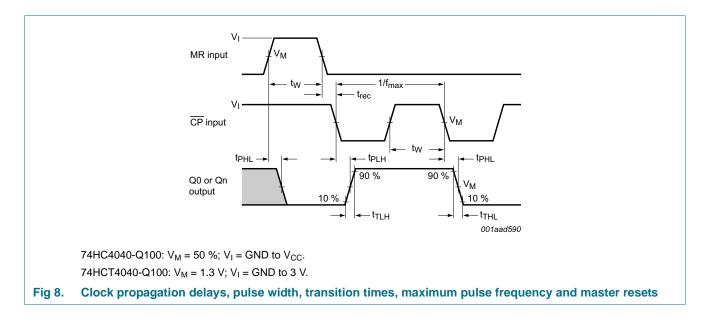
 $\mathsf{P}_{D}=C_{PD}\times V_{CC}{}^{2}\times f_{i}\times N$ + $\Sigma(C_{L}\times V_{CC}{}^{2}\times f_{o})$ where:

 f_i = input frequency in MHz;

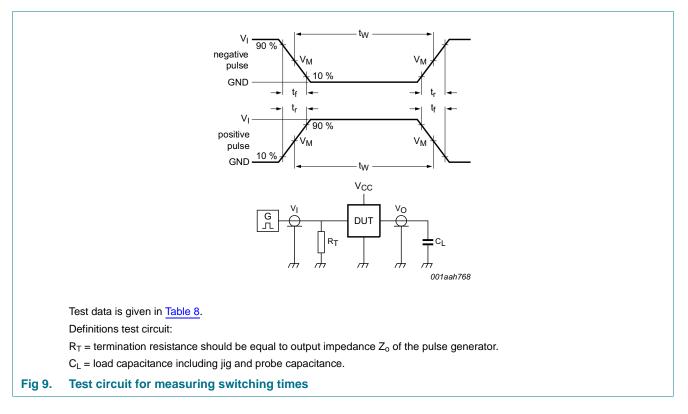
 $f_o = output frequency in MHz;$

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;


N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs.


© NXP Semiconductors N.V. 2014. All rights reserved.

12-stage binary ripple counter

12. Waveform and test circuit

12-stage binary ripple counter

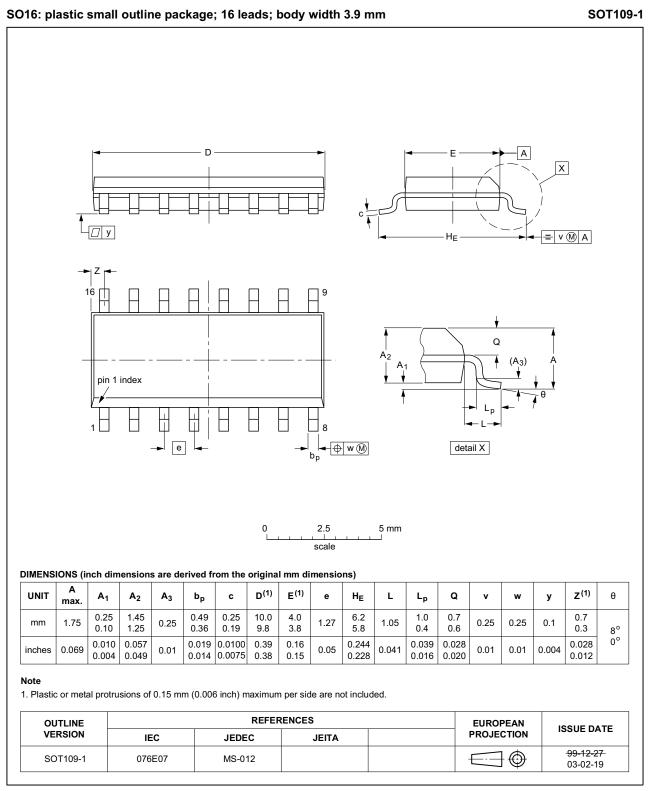


Table 8. Test data

Туре	Input L		Load	Test
	VI	t _r , t _f	CL	
74HC4040-Q100	V _{CC}	6.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}
74HCT4040-Q100	3.0 V	6.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}

12-stage binary ripple counter

13. Package outline

Fig 10. Package outline SOT109-1 (SO16)

All information provided in this document is subject to legal disclaimers.

12-stage binary ripple counter

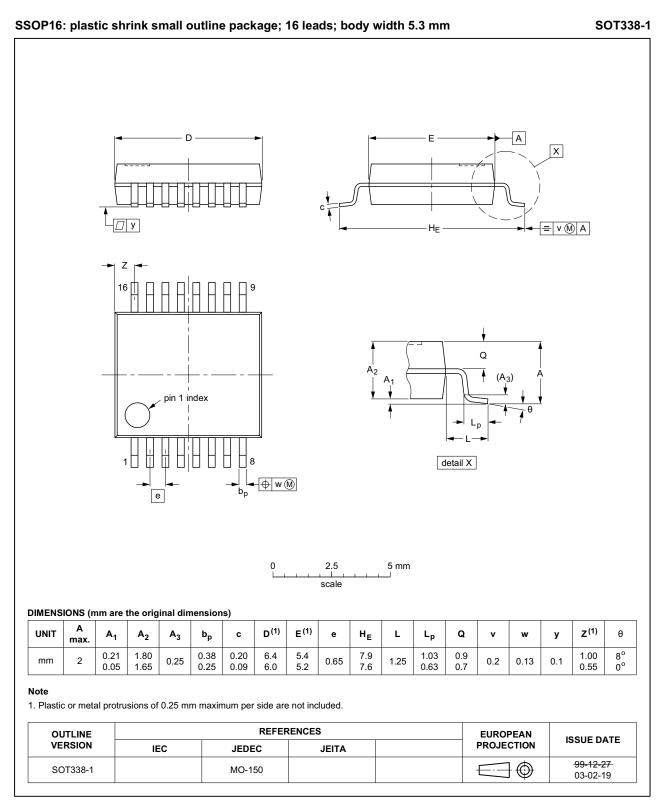
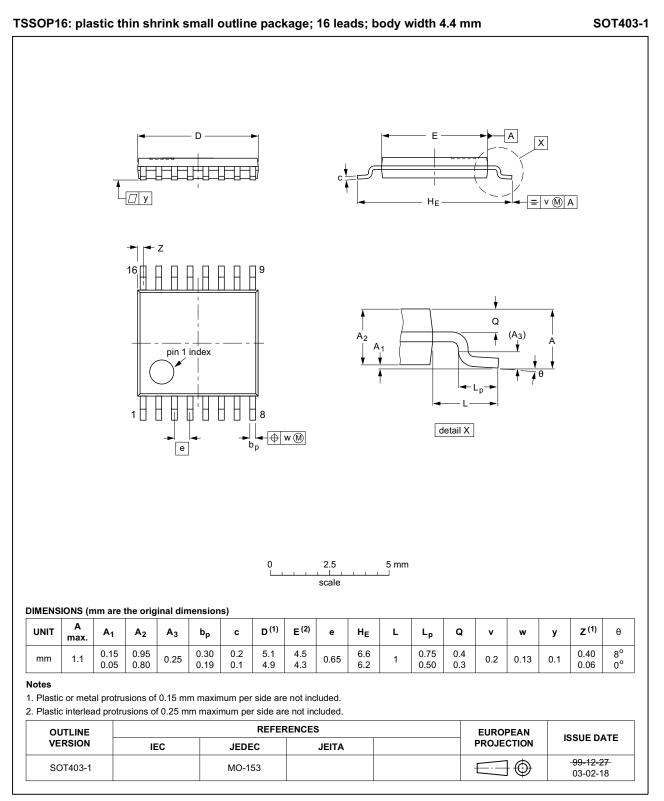



Fig 11. Package outline SOT338-1 (SSOP16)

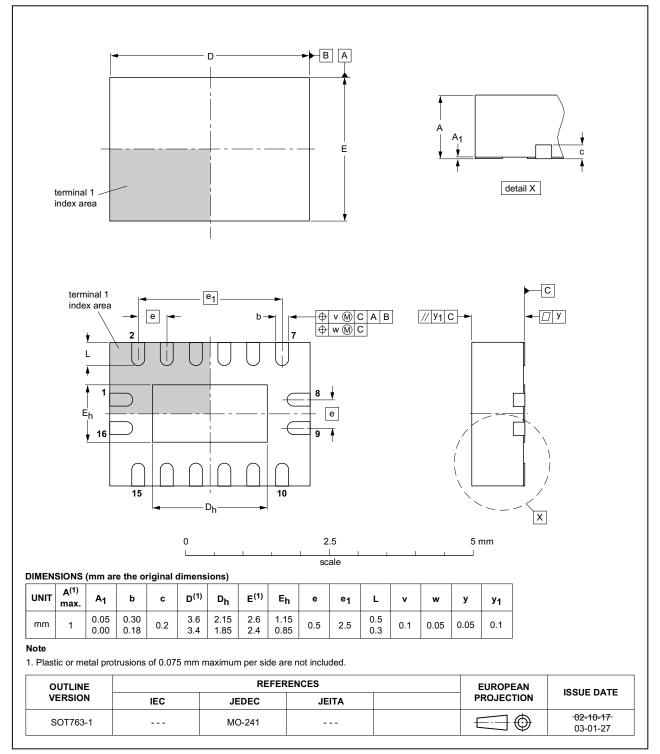

12-stage binary ripple counter

Fig 12. Package outline SOT403-1 (TSSOP16)

All information provided in this document is subject to legal disclaimers.

12-stage binary ripple counter

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

Fig 13. Package outline SOT763-1 (DHVQFN16)

All information provided in this document is subject to legal disclaimers.

12-stage binary ripple counter

14. Abbreviations

Table 9. Abbreviations							
Acronym	Description						
CMOS	Complementary Metal Oxide Semiconductor						
ESD	ElectroStatic Discharge						
HBM	Human Body Model						
MIL	Military						
TTL	Transistor-Transistor Logic						

15. Revision history

Table 10.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT4040_Q100 v.1	20140324	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

17 of 19

12-stage binary ripple counter

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

12-stage binary ripple counter

18. Contents

1	General description 1
2	Features and benefits 1
3	Applications 1
4	Ordering information 2
5	Functional diagram 2
6	Pinning information 4
6.1	Pinning 4
6.2	Pin description 4
7	Functional description 5
7.1	Function table
7.2	Timing diagram 5
8	Limiting values 6
9	Recommended operating conditions 6
10	Static characteristics 6
11	Dynamic characteristics 8
12	Waveform and test circuit
13	Package outline 12
14	Abbreviations 16
15	Revision history 16
16	Legal information 17
16.1	Data sheet status 17
16.2	Definitions 17
16.3	Disclaimers
16.4	Trademarks 18
17	Contact information 18
18	Contents 19

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2014.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 24 March 2014 Document identifier: 74HC_HCT4040_Q100